
Final Report: Is Efficient-CapsNet the solution to medical imaging challenges in
developing countries?

G080 (s2450521, s2449242, s2416496)

Abstract
Current state-of-the-art for medical imaging, con-
volutional neural networks, require computationally
intense training routines and very large datasets. A
shortage of field experts to provide expert annota-
tions and a lack of computing resources makes it
difficult to adopt new methods in developing coun-
tries. (Hinton et al., 2011; Sabour et al., 2017) pro-
posed capsule networks to overcome the limitations
with existing CNN approaches. A recent imple-
mentation, Efficient-CapsNet, uses self-attention to
enhance routing and uses an extremely low number
of parameters. We believe applying the architecture
in developing countries, where healthcare is least
accessible, could help close the global healthcare in-
equality gap. We present the first investigation into
the generalization of Efficient-CapsNet when chal-
lenges commonly found in medical datasets are im-
posed on training data; namely, number of samples
is limited and augmentation is absent during training.
Efficient-CapsNet significantly outperforms our low-
parameter CNN baseline and ResNet18, in terms of
classification accuracy and distributional general-
ization, in such a setting. Our implementation is
available at https://github.com/ben-j-barlow/caps-
net-project.

1. Introduction
Artificial intelligence (AI) advances promise brighter futures
in many industries. In healthcare, computer vision techniques
have become extremely common; publications of diagnostic
imaging through AI has increased from 100-150 in 2007-2008
to 1000-1100 in 2017-2018 (Tan & Le, 2021). The benefits
brought by AI could be most profound in developing countries,
where healthcare is least accessible. However, current state-of-
the-art is difficult to implement in such regions. We investigate
if a new model for computer vision, Efficient-CapsNet (Mazzia
et al., 2021), can provide a solution by assessing its ability to
generalize when common healthcare dataset limitations are
imposed.

Vision computing has been dominated by convolutional neu-
ral networks (CNNs) since they became state-of-the-art for
image classification (Krizhevsky et al. 2012; He et al. 2016; Si-
monyan & Zisserman 2014), object detection (Ren et al., 2015)
and instance segmentation (Chen et al. 2017; Ronneberger et al.
2015). Some examples of applications in healthcare are brain
hemorrhage classification, interstitial lung disease classifica-
tion, and breast cancer identification (Jnawali et al., 2018; Li
et al., 2014; Spanhol et al., 2016). However, CNNs present
limitations felt especially by developing countries. Their train-

ing is computationally intense and requires large training sets
to achieve strong generalization. A scarcity of medical profes-
sionals to provide expert annotations; privacy issues in data
collection; and a shortage of computing resources; all com-
bine to make it challenging for developing countries to adopt
current state-of-the-art.

The popularity of CNNs stems from their offering of transla-
tion invariant features: features seen at one spatial location
during training can be detected at a different location during
testing. This property is permitted by spatial reduction (pool-
ing) layers, which also offer rotation invariant features over
a small, bounded range (Hinton et al., 2011). Nonetheless,
pooling layers are a limiting factor in performance because
they discard the precise location and pose of an object’s fea-
tures (Hinton et al., 2011). This is significant in the context
of the entire network because the spatial relationship between
features, which can be essential to determining an object’s
class, is gradually lost with each downsampling layer.

Problems with current approaches inspired Hinton et al. (2011)
to propose grouping neurons for vision computing into "cap-
sules". Unlike activations that represent the presence of fea-
tures in CNNs, capsules cooperate in synergy to represent
different properties of the same entity. In capsule networks
(Sabour et al., 2017), low-level capsules recognize object parts
and then propagate information to high-level capsules which
recognize wholes. High-level capsules consider the spatial
relationship between parts when recognizing wholes, thereby
overcoming the limitations of pooling layers in CNNs. For
example, a capsule network will not recognize a face if atypi-
cal spatial permutations of mouth, nose, and eyes are found,
whereas, a CNN could make that mistake (Sabour et al., 2017).

Six years after Hinton’s proposal, Sabour et al. (2017) achieved
near state-of-the-art performance on MNIST (LeCun et al.,
1998) with the first implementation of capsules in a neu-
ral network. Jiménez-Sánchez et al. (2018) and Mobiny &
Van Nguyen (2018) have since applied capsule networks to
medical imaging tasks, but did not consider the ability to scale
capsule networks in developing countries. A recent imple-
mentation, Efficient-CapsNet (Mazzia et al., 2021), offers a
promising solution since its extremely bare architecture sub-
stantially reduces the need for computationally heavy training.
It achieved state-of-the-art performance on MNIST with only
2% of the parameters of the Sabour et al. (2017)’s original
capsule network implementation.

To determine if Efficient-CapsNet is suitable for addressing the
medical imaging problem in developing countries, a number of
milestones must be achieved in the research. Firstly, the ability
of the network to generalize when training data is scarce must
be examined. Secondly, since typical augmentation techniques
are difficult to apply to medical datasets, an assessment of

https://github.com/ben-j-barlow/caps-net-project
https://github.com/ben-j-barlow/caps-net-project

Efficient-CapsNet’s ability to outperform CNNs in the absence
of augmentation must be conducted. Thirdly, a method for
scaling the network to permit high performance on medical
datasets (more complex than MNIST) must be found. Due to
time constraints imposed by the project we focus only on tasks
one and two and make a suggestion on how to achieve task
three.

Specifically, we answer the following research questions:

1. How well do capsule networks generalize in a low-
parameter-small-data1

2. Do capsule networks alleviate the need for data augmen-
tation found with CNNs? 2 How does this change in a
small-data setting?

We start by comparing a low-parameter capsule network
(Efficient-CapsNet) to a low-parameter CNN baseline and
evaluating generalization using two approaches. By varying
the number of samples seen during training, we create a con-
trolled small-data environment. We then train our networks
using augmentation strategies and compare results to a popular
CNN in the literature.

Finally, to the best of our knowledge, our key contributions
are:

• The first assessment of capsule networks’ performance in
a low-parameter and small-data setting simultaneously.3

• The first set of ablation studies applied to Efficient-
CapsNet.

• The first application of Efficient-CapsNet to a more com-
plex dataset than MNIST (LeCun et al., 1998). 4

2. Data set and task
We use the CIFAR10 dataset (Krizhevsky et al., 2009) for
all experiments. The dataset contains 10 mutually exclusive
classes (airplane, automobile, bird, cat, deer, dog, frog, horse,
ship, and truck) and contains full variations in pose. There
are 60000 images with 6000 per class for training and 10000
images with 1000 images per class for testing.

Additionally, to test the true generalization capability of our
models, we evaluate on a new test set of CIFAR10 with 2000
images proposed by Recht et al. (2018; 2019). The authors
argue that because CIFAR10’s validation set has been widely
benchmarked, prior models have unintentionally overfit to the
original test set because performance has been optimized w.r.t.
the original test set itself. The authors concluded that existing
models should expect a drop-off in accuracy between 4% to
15% on their test set. For the later sections, we define the
original test set as the validation set, and the new test set as
test set.

1Definitions for "low-parameter" and "small-data" are provided
in Tab. 1 and Sec. 2.

2A modification to this research question has been made since
coursework 3. See Sec. 2 for an explanation.

3Both have been done independently. For example, see Mazzia
et al. (2021) and Jiménez-Sánchez et al. (2018).

4See 2 for an explanation on what makes CIFAR10 a more com-
plex dataset as compared to MNIST.

The selection of CIFAR10 was largely because the class ob-
jects and their variations through affine transformations, noise,
natural background scene, and the presence of RGB colour
channels presents a reasonable level of complexity. Impor-
tantly, CIFAR10 is more complex than MNIST (LeCun et al.,
1998) which can easily be classified with low level features
such as edges and blobs. We hypothesize this challenge will
enable a capsule network’s superior ability to generalize in
a low-parameter-small-data setting to become apparent. Fur-
thermore, Efficient-CapsNet is yet to be applied to CIFAR10,
thereby promising our work is a novel extension of theirs.

Nonetheless, the images are of dimension 32×32 with only 10
classes which is still some distance from images found in the
real-world in terms of complexity (Krizhevsky et al., 2009).
We suggest that applications to complex medical datasets
should only be performed after research directions outlined in
Sec. 1 are pursued and Efficient-CapsNet is proved scalable.

Whilst capsule networks have been used in object detection
(Pan & Velipasalar, 2021) and image segmentation tasks (Ko-
resh et al., 2021), image classification is a natural task choice
here since it permits direct comparison with the literature we
are extending: Mazzia et al. (2021). We evaluate on classifi-
cation accuracy and distributional generalization (Nakkiran &
Bansal, 2020), as explained in 5.

Other details to note regarding data set are our sampling and
pre-processing techniques. The term "small-data" is used to
describe training data with ≤ 600 samples per class throughout
this paper. To test all models in a small-data setting, we run
experiments on 10%, 5%, and 1% of the training dataset (600,
300, and 60 samples per class). Sampling without replacement
prevents duplicate images and creates disjoint training sets
for each training run, whilst stratification ensures original
class distribution is preserved. Dataset-wise normalization
is performed on each channel independently to prevent data
leakage. Normalization is performed after data augmentation;
further detail is provided in Sec. 5.

It is necessary to address the modification to our task made
since coursework 3. We initially planned to present two in-
vestigations: one in a fully-supervised, small data setting, and
another in a few-shot setting. Hence, coursework 3 introduced
miniImageNet (Vinyals et al., 2016) for few-shot learning. We
instead focus our second investigation on ablation studies in a
fully supervised, small-data setting, since it allows consistent
use of the term "small-data" throughout our experiments.

3. Related work
As outlined in Sec. 1, Hinton et al. (2011) first proposed
capsules. In contrast to the scalar output of convolution and
downsampling layers, capsules output a vector containing
highly informative values. The length (norm) of the output
vector represents the probability the entity encoded by the
capsule is present over the limited domain characterized by
the capsule. Meanwhile, the vector’s orientation represents
pose relative to the implicitly defined canonical version of
that entity. Each dimension in the output vector implicitly
captures a property of the entity, such as thickness, skew, and
stretch, as demonstrated by Fig. 7. The term "pose" is used to
encapsulate all of these properties.

Sabour et al. (2017) achieved near state-of-the-art performance
on MNIST with "CapsNet"; the first neural network comprised
of capsules. Whilst the 0.25% test error in Sabour et al. (2017)
was inferior to state-of-the-art at the time (0.21%; Wan et al.
2013), their contribution was significant because their single
model without use of rotation and scaling during training was
far superior to Wan et al. (2013)’s 0.39% test error achieved
without data augmentation. This was an early indication cap-
sule networks could overcome a CNNs lack of ability to gen-
eralize without sufficient augmentation.

By Sabour et al. (2017)’s own admission, there exist many
methods to implement the general idea of capsules. Improve-
ments to their "routing-by-agreement" mechanism, named
"dynamic routing", has been the main focus in literature (Lin
et al., 2018; Hinton et al., 2018). Choices made on routing,
the process by which information gets propagated from a layer
of child capsules to a layer of parent capsules, dictates the
number of parameters in the model and can be more influential
on performance than conventional hyperparameters such as
batch size, momentum, and learning rate (Lin et al., 2018;
Patrick et al., 2022). Routing improvements have been made
in terms of speed of convergence (Ramasinghe et al., 2018),
performance of the trained network (Zhao et al., 2019), and
the required number of parameters (Hinton et al. 2018; Ren
et al. 2019; Mobiny & Van Nguyen 2018).

Mazzia et al. (2021) was the first contribution to propose a
solution that exhibited the full potential of capsule networks.
Efficient-CapsNet’s extremely bare architecture and highly
parallelizable self-attention routing mechanism allowed them
to demonstrate that continuing to train capsule networks with
a large number of parameters hides their intrinsic capability
to generalize to novel viewpoints. They achieved state-of-the-
art on MNIST (LeCun et al., 1998) with 161K parameters (a
fraction of CapsNet’s 6.8M), which was especially impressive
since other state-of-the-art models for MNIST have over 1M
(Byerly et al. 2021: 1.5M, Assiri 2020: 1.4M).

Applications of capsule networks to medical imaging tasks
have been performed too. Interestingly, these investigations
also suggested capsule networks as a potential solution when
training data is limited. Jiménez-Sánchez et al. (2018) ap-
plied CapsNet to medical datasets TUPAC16 (Veta et al.,
2019) and DIARETDB1 (Kauppi et al., 2007) and Mobiny &
Van Nguyen (2018) performed an experiment on Computed
Tomography (CT) chest scans. They both concluded CapsNet
is favourable to CNNs (applied to their data), but significantly
outperforms on small size datasets. However, neither of these
works considered a very low-parameter solution required by
developing countries. There ceases to exist an investigation
that compares capsule networks and CNNs in a small-data and
extremely low-parameter setting simultaneously.

State-of-the-art performance for our task and data is not con-
sidered relevant due to the nature of our investigation. Current
state-of-the-art for image classification on CIFAR10 leverage
huge amounts of parameters (Dosovitskiy et al. 2020: 632M;
Wu et al. 2021: 277M) and undergo pre-training (Tan & Le,
2021; Kolesnikov et al., 2020) with complicated datasets such
as ImageNet (Deng et al., 2009). We instead focus on our
low-parameter CNN baseline for comparison.

4. Methodology
We define our general implementation of capsule networks
in 4.1. All definitions here are consistent in CapsNet and
Efficient-CapsNet. We then describe our specific implementa-
tions: CapsNet (Sabour et al., 2017) in Sec. 4.2 and Efficient-
CapsNet in Sec. 4.3 (Mazzia et al., 2021). Additional in-
formation about our methodology is provided in subsequent
sections.

4.1. Capsule network: in general

Convolutional layers in CNNs are effective feature detectors:
it is important to retain their power when exploiting the en-
dowment of capsules. Initially, a W × H × C input sample
XXX(0) passes through a downsampling-free CNN comprising an
arbitrary number NConv layers. The l-th layer’s output XXX(l),

XXX(l) = ReLU
(
Conv{k(l),s(l), f (l)}(XXX(l−1))

)
, (1)

depends on a choice of kernel size k(l), stride s(l), and number
of feature maps f (l). The CNN eventually outputs a mapping
of input XXX(0) to a higher-dimensional space. Using (1), the
W∗ × H∗ × C∗ output is XXX(NConv) which we rename to XXX(CNN)

for simplicity.

The remainder of both our networks is comprised of capsules.
In the general capsule network framework, the first capsule
layer is followed by an unspecified number of capsule layers.
As demonstrated by Fig. 1, only one subsequent layer of cap-
sules is implemented in our architecture due to the relative sim-
plicity of CIFAR10. In the first layer, named "PrimaryCaps",
pixel intensities are converted into a vectorial representation to
create Np capsule outputs uuui with dimension dp. This vectorial
representation is maintained in the next layer, "ClassCaps",
which outputs Nc vectors vvv j with dimension dc. Dimension-
ality is consistent across both our networks, with dp = 8 and
dc = 16. The increase in dimensionality is justified by the fact
higher level capsules capture more complex entities with more
degrees of freedom, thereby requiring more dimensions to ac-
curately represent entities as we ascend the hierarchy (Sabour
et al., 2017).

The propagation of data from PrimaryCaps to ClassCaps gives
rise to the first key difference between a capsule network and
a traditional CNN or feedforward network. The output uuui of
the i-th child capsule in PrimaryCaps is used to compute a
prediction ûuu j|i of the output vvv j of the j-th parent capsule in
ClassCaps. Specifically,

ûuu j|i =WWW i juuui, (i = 1, . . . ,NP, j = 1, . . . ,NC) (2)

where WWW i j has dimensions dc × dp = 16 × 8 to project uuui to a
space with dimension dim(ûuu j|i) = dc = 16. Glorot initializa-
tion (Glorot & Bengio, 2010) is adopted for WWW i j before it is
learned during training. The routing mechanism employed by
ClassCaps takes ûuu j|i as input and produces vvv j as output. As
devised in 3, the length (norm) of a capsules output represent
the probability the entity represented by the capsule is present.
Hence, computing ||vvv j||, j = 1, . . . , 10, enables a classification
to be obtained. The final output is not anymore represented
by a scalar k ∈ {1, . . . ,K}, but a vector vvv j∗ that captures the
pose of the entity represented by the chosen class capsule vvv j∗ ,
j∗ ∈ {1, . . . ,K}.

The three components of the network in Fig. 1 are CNN,
PrimaryCaps, and ClassCaps. Details of PrimaryCaps and
ClassCaps behaviour for each model is explained in 4.2 and
4.3. For an understanding of the CNN component of each, see
Figs. 5 and 6.

4.2. CapsNet

4.2.1. PrimaryCaps

Given the 32 × 32 input XXX(0) and CapsNet’s CNN implementa-
tion (see Fig. 5), PrimaryCaps receives an input tensor XXX(CNN)

with dimension W∗ × H∗ × C∗ = 24 × 24 × 256. In Prima-
ryCaps, a convolution operation as defined in (1) is applied
(k = 9, s = 2, f = 256) to produce an 8 × 8 × 256 tensor.
Since CapsNet has 32 primary capsules at each location, the
tensor is reshaped first to an 8 × 8 × 32 × 8 tensor, and then
to a 2048 × 8 tensor UUU to produce Np = 2048 capsules with
dimension dp = 8.

We have two strong requirements on the output of each capsule.
Firstly, the length of a capsule’s output must represent the
probability the entity embodied by the capsule is present in the
image. Secondly, the vector’s orientation must be consistent to
guarantee it represents the entity’s pose. Hence, we define the
output of PrimaryCaps as uuui = squashCN(UUU(i,:)), where UUU(i,:) is
the i-th row of UUU, and squashCN is defined as

squashCN(aaa) =
||aaai||

2

1 + ||aaai||
2

aaai

||aaai||
, (3)

where aaa is some vector of arbitrary length. Clearly, we obtain
2048 output vectors uuui that satisfy our conditions.

4.2.2. ClassCaps

ClassCaps receives prediction vectors ûuu j|i as input, as defined
in (2) (i = 1, . . . , 2048, j = 1, . . . , 10) . Each capsule within
the layer receives a weighted sum over all prediction vectors

sss j =

Np∑
i

ci jûuu j|i, (j = 1, . . . ,Nc) (4)

where coupling coefficients ci j control the contribution of the
i-th capsule in PrimaryCaps to the j-th capsule in ClassCaps.
Finally, the output of the j-th capsule is

vvv j = squashCN(sss j) (j = 1, . . . , 10).

Clearly, the squashing function imposes the same constraints
on vvv j as it did on uuui in Sec. 4.2.1. We then classify input XXX(0)

by adopting the approach explained in Sec 4.1.

4.2.3. Dynamic routing

Dynamic routing (Sabour et al., 2017) is the process by which
CapsNet learns to propagate information from PrimaryCaps
to ClassCaps. At inference time, the contribution of capsule i
in PrimaryCaps to capsule j in ClassCaps, ci j in (4), is known
for all i, j. However, prior to training, the coupling coefficients
are yet to be determined.

Initial logits bi j are introduced to represent the log prior prob-
abilities that capsule i should be coupled to capsule j. A

softmax is used when computing ci j,

ci j =
exp(bi j)∑
k exp(bik)

, (5)

to ensure
∑

j ci j = 1. Initialising priors bi j = 0 clearly sets
coupling coefficients equal at the start of training, which we
found to be sufficient for CIFAR10. The logits are itera-
tively refined by incrementing their value by the dot-product
agreement ai j = vvv j · ûuu j|i between the j-th capsule’s output vvv j

and it’s predicted outputs ûuu j|i produced by each child capsule
i = 1, . . . , 2048. Of course, the greater the contribution of ûuu j|i

to vvv j, the greater the agreement ai j. Like bi j, the agreement ai j

is treated like a log-likelihood and is added to the initial logit
bi j in each iteration.

Algorithm 1 Dynamic routing (Sabour et al., 2017)
Input: Capsule prediction ûuu j|i, routing iteration r
bi j ← 0 (i = 1, . . . ,Np, j = 1, . . . ,Nc)
for l = 1 to r do

c j ←
exp(bi j)∑
k exp(bik) (j = 1, . . . ,Nc)

sss j ←
∑

i ci jûuu j|i (j = 1, . . . ,Nc)
vvv j ← squashCN(sss j) (j = 1, . . . ,Nc)
if i < r then

bi j ← bi j + ûuu j|i · vvv j (i = 1, . . . ,Np, j = 1, . . . ,Nc)
end if

end for
return vvv j

4.3. Efficient-CapsNet

4.3.1. PrimaryCaps

Alike CapsNet, the main responsibility of PrimaryCaps is
converting pixel intensities to a set of capsule vectors to be
propagated to higher level capsules. However, choices made
with regards to PrimaryCaps’ convolution operation heavily
reduces the number of parameters required for the capsule-
creating process, compared to CapsNet. Furthermore, an alter-
native squashing function is used to boost the gradient during
training.

Due to choices made in the network’s CNN component (see
Fig 6) and CIFAR10’s image dimensions, PrimaryCaps re-
ceives an input tensor XXX(CNN) with dimensions 11 × 11 × 128.
Instead of a traditional convolution operation, the input tensor
undergoes depthwise separable convolution (Chollet, 2017).
This process comprises two parts: a depthwise convolution
(spatial convolution acting on each channel independently)
followed by a pointwise convolution (a 1 × 1 convolution).
Remarkably, the input image is reduced to a 1× 1× 128 tensor
by choice of a 11 × 11 kernel and stride 1 for depthwise con-
volution. Following this, the pointwise operation projects the
tensor onto a new channel space with the number of channels
chosen to be 128 again.

The resulting 1 × 1 × 128 tensor is reshaped to a 16 × 8 matrix
UUU. As in CapsNet, a squashing function is applied to produce
vector outputs with our desired properties. Mazzia et al. (2021)
instead use

squashECN(aaa) =
(
1 −

1
exp(||aaai||)

)
aaai

||aaai||
, (6)

PrimaryCapsCNNInput ClassCaps

X0 XCNN

CNN

Co
nv

ol
ut

io
n

Re
sh

ap
e

Sq
ua

sh

Pr
oj

ec
tio

n

Ro
ut

in
g

Le
ng

th
 O

pe
ra

tio
n

u i û j | i Vj

W
ij

Vj
*

Figure 1. The model architecture followed by CapsNet and Efficient-CapsNet. The projection in ClassCaps and Length Operation are consistent
across both models. But the CNN, PrimaryCaps and Routing components are implemented differently. Further details on their implementation
for each model are provided in the appendix.

where aaa is an arbitrary vector, to produce uuui = squash(UUU(i,:)),
where UUU(i,:) is the i-th row of UUU. (6) is far more sensitive to
gradient changes around 0 than (3), thereby decreasing the
probability of gradients approaching 0 during training (Xi
et al., 2017).

4.3.2. ClassCaps and Self-attention routing

For our definition of CapsNet, ClassCaps and dynamic routing
had independent sections 4.2.2 and 4.2.3. This was necessary
to provide a sufficient explanation regarding the computation
of the coupling coefficients ci j. However, in Efficient-CapsNet,
the coupling coefficients are calculated directly (in a single
pass) and the log priors are learned discriminatively along-
side all other learnable parameters. Hence, the self-attention
routing is considered to be entirely contained by ClassCaps,
thereby omitting the need for a separate definition.

Define a Np × Nc × dc = 16 × 10 × 16 tensor ÛUU using each
prediction ûuu j|i

ÛUU =


ûuu1|1 . . . ûuuNc |1
...

...
ûuu1|Np . . . ûuuNc |Np

 ,
where ûuu j|i is defined as in (2). Then, we define

AAA(:,:, j) =
ÛUU(:, j,:) × ÛUU

T
(:, j,:)√

dp
, (j = 1, . . . ,Nc)

where AAA(:,:, j) is a Np×Np×1 = 16×16×1 tensor,
√

dp is used
to stabilize training, and, by considering j = 1, . . . ,Nc, we
implicitly define the Np×Np×Nc = 16×16×10 self-attention
tensor AAA. For clarity, ÛUU(:, j,:) is Np × 1 × dc and its transpose
ÛUU

T
(:, j,:) is dc × 1 × NP. The scalar A(k,l, j) contains the score

agreement for the k- and l-th primary capsules’ predictions
for the j-th class capsule’s output vvv j. Explicitly, this is the
agreement of ûuu j|k and ûuu j|l.

This permits the Np × Nc coupling coefficient matrix CCC to be
computed, which is defined by

CCC(:, j) = softmax
(
AAA(:,i, j)

)
(j = 1, . . . ,Nc).

Similarly to (5), the softmax is used to ensure the total contribu-
tion received by the j-th class capsule is 1, precisely

∑
j ci j = 1.

Next, the vector sss j is computed as

sss j = ÛUU
T
(:, j,:) ⊙

(
CCC(:, j) + BBB(:, j)

)
(j = 1, . . . ,NC)

where BBB is the Np × Nc log prior matrix containing all biases
learned during training. Like CapsNet, initializing the log
prior matrix as the zero matrix was sufficient for training on
CIFAR10. Finally, vvv j = squashECN(sss j) is outputted from the
j-th capsule (j = 1, . . . ,Nc) and an image classification can be
obtained as explained in Sec. 4.2.

4.3.3. The background of self-attention routing

Approximate equivalence can be drawn between self-attention
routing and Equation (1) in Vaswani et al. (2017), which is
repeated here for convenience:

Attention(Q,K,V) = softmax
(QKT

√
dk

)
V.

In the self-attention routing mechanism, the query Q, key K,
and value V take value approximately ÛUU(:, j,:). Direct equiva-
lence is not possible since a log prior is added to the softmax’s
output before the dot product with V is performed.

4.4. Baseline

We sought a high performing low-parameter CNN baseline that
provided to provide a fair comparison with Efficient-CapsNet.
A near identical architecture, with a CNN, Primary Caps, and
ClassCaps component was achieved. The CNN component
was the same as in Efficient-CapsNet. PrimaryCaps utilised
the same depthwise separable convolution, but introduced two
fully-connected layers with 328 and 192 neurons, respectively.
Finally, we add a 10 channel fully-connected layer for the
classifier, which uses dropout (Srivastava et al., 2014) with
probability p = 50%, similar to the original baseline proposed
in (Sabour et al., 2017). Adopting a near identical structure
allows us to adequately evaluate the positive effects a capsule’s
vector representation brings over scalar representations found
in CNNs.

4.5. Margin loss

As defined in Sabour et al. (2017), we use a margin loss

L j = T j max(0,m+ − ||vvv j||)2 + λ(1 − T j) max(0, ||vvv j|| − m−)2

during training. We compute L j for each class capsule

j = 1, . . . ,Nc. If the entity represented by the j-th capsule is
present in the image, T j = 1; otherwise T j = 0. We use Sabour
et al. (2017)’s recommended values m+ = 0.9 and m− = 0.1
which we found to be sufficient for convergence on CIFAR10.

The authors argue that margin loss is used to allow the top-
level capsule have a high-length vector only when the object
within the class capsules appears in the images. λ reduces the
magnitude of shrinking when the object is not present during
training, while m+ and m− define the margins of the positive
and negative classes, respectively.

5. Experiments
We found appropriate hyperparameters for all experiments
manually due to the absence of configurations presented in
Sabour et al. (2017) and Mazzia et al. (2021). We implement
our models based on the TensorFlow (Abadi et al., 2015) im-
plementation of both CapsNet and Efficient-CapsNet from
(Mazzia et al., 2021) 5 which we customized for our exper-
iments. We use the existing implementation of ResNet18
directly (Wood et al., 2022) and avoid using the pre-trained
weights to ensure fair comparison. We trained our models
(ResNet18, CapsNet, and Efficient-CapsNet) with AdamW
optimizer (Loshchilov & Hutter, 2019) over 250 epochs, batch
size b = 128, base learning rate γ = 10−4 which we scaled
linearly by b γ16 , and weight decay 10−7. We schedule our learn-
ing rate with cosine annealing (Loshchilov & Hutter, 2017)
without resets across 250 epochs. For the CNNs, we opti-
mize the models by using standard cross-entropy loss while
the CapsNets are optimized by margin loss as stated in 4.5.
Additionally, we checkpoint our models based on the lowest
validation loss throughout training. We chose this configura-
tion since we found it optimal based on initial convergence
over 100 epochs. See an explanation of our model choices in
Tbl. 1 and model definitions in 4.

5.1. Efficient-CapsNet and classification accuracy

The aim of this experiment is to assess whether capsule net-
works generalize better than CNNs in a low-parameter-small-
data setting. We impose common medical dataset challenges
on training data by sampling three training sets (10%, 5%, and
1%) and train on the entire training set to provide a benchmark.
Disjoint validation and test sets are used for evaluation. Each
model is run 5 times to estimate the uncertainty of the result.

Given our research question specifies "small-data" and "low-
parameter", we focus our attention to our baseline and ECN in
Fig 2 (and 2 in the appendix). Firstly, the superior performance
of our baseline over ResNet18 demonstrates we achieved our
goal of producing a powerful baseline. This is vital for mean-
ingful conclusions since comparison with a weak baseline
would provide little information on the efficiency of ECN.

The slope of the baseline and ECN curves for sample size
≤ 10%, it is clear performance of Efficient-CapsNet degrades
at a much slower rate than the CNN baseline as data decreases.
The model’s difference between classification accuracy on
the validation set starts at 0.83% for 100% of the data, and
increases to 3.19%, 3.93%, and finally 8.39% as data is de-
creased to 10%, 5%, and 1% (see 2). The gap of 8.39% on the

5Efficient-CapsNet original repository: https://github.com/
EscVM/Efficient-CapsNet

Parameters Model

CNN Capsule network

High ResNet18 (11.2M) CapsNet (8M)

Low Our baseline (200K) Efficient-CapsNet (168K)

Table 1. The "parameter-model square" highlights the number of pa-
rameters in each network. By analysing common network sizes
present in the literature, we define a "low-parameter" and "high-
parameter" model to have < 1M and > 5M parameters, respectively.
ResNet18’s (He et al., 2016) popularity in the literature provides a
well established high-parameter CNN baseline. To accurately assess
the capability of capsules in a low-parameter setting, we require the
high performing low-parameter CNN baseline explained in Sec. 4.4.
Finally, Sabour et al. (2017)’s CapsNet was trained to provide a high-
parameter capsule network baseline, thereby allowing comparison of
Efficient-CapsNet along both axes of the "parameter-model square".
For specific choices regarding definition of our baseline, CapsNet,
and Efficient-CapsNet, see Sec. 4.

validation set and 6.85% on test set for the most extreme data
setting shows strong evidence capsule networks generalize
better than CNNs in a low-parameter-small-data setting.

Despite the application of self-attention routing in the limited
data setting being absent in the literature, there is indirect evi-
dence to support our result. Jiménez-Sánchez et al. (2018) and
Mobiny & Van Nguyen (2018) performed similar experiments
with decreasing data available and concluded the gap between
capsule networks and CNNs is most profound when maximal
limitations are placed on training dataset size. Their results
obtained with CapsNet6 are still applicable to ECN since their
fundamental properties are the same: capture an entity’s en-
tire pose in instantiation vectors rather than just detecting the
presence of the entity.

5.2. Efficient-CapsNet and data augmentation

For assessing Efficient-CapsNet’s need for data augmentation
to generalize well, we use ResNet18 as a benchmark since this
experiment does not demand a low-parameter baseline and
ResNet18 is well established in the literature.

To consider Efficient-CapsNet’s need for augmentation in a
small data regime, we must first benchmark on the full train-
ing set. Fig 3 (and 3 in the appendix) shows both the CNN
and capsule network benefit equally from a change from no
augmentation to full augmentation, with validation set per-
formance increasing by 10.74% and 10.41% to 85.55% and
86.34% for ResNet18 and ECN, respectively. The achieve-
ment of similar accuracy in all augmentation settings contra-
dicts previous results that suggested capsule networks without
data augmentation can perform better than CNNs with aug-
mentation (Jiménez-Sánchez et al., 2018). We believe this
inconsistency can be explained by their choice of a weak base-
line (which is outperformed by LeNet (LeCun et al., 1998)
in their experiment) and our choice of a strong benchmark:
ResNet187.

In the small-data setting, Efficient-CapsNet significantly out-

6We also implement CapsNet and observe it outperforms all other
models in the most extreme setting; see 2.

7ResNet18 is stronger due to a significant increase in parameters.

https://github.com/EscVM/Efficient-CapsNet
https://github.com/EscVM/Efficient-CapsNet

1 10 100
Sample Size (%)

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Model
Baseline
ResNet18
CapsNet
ECN

(i) Validation set

1 10 100
Sample Size (%)

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Model
Baseline
ResNet18
CapsNet
ECN

(ii) Test set

Figure 2. Classification accuracy of our trained models as dataset size is increased.

performs ResNet18. This result is not new; we already saw this
in Fig. 2. However, the focus here is how much each network
depends on augmentation. Moving from full augmentation to
no augmentation causes a 10.75% drop off in accuracy when
ResNet18 is evaluated on the validation set. In contrast, the
same change only forces a 7.65% drop off for ECN.

Despite an ablation study on Efficient-CapsNet being absent in
the literature, other investigations can explain our result. Our
previous experiment concluded Efficient-CapsNet outperforms
CNNs in all settings, with the difference most pronounced
when data is limited. The literature (Mobiny & Van Nguyen,
2018; Jiménez-Sánchez et al., 2018) concluded the same re-
sult, although their implementation of capsule networks was
CapsNet. Hence, in-line with previous results, we conclude
Efficient-CapsNet alleviates some (but not all) of the need for
data augmentation in a small-data setting. However, ECN does
not alleviate the need at all when training data is large.

No Augmentation Random Crop Color Jitter Horizontal Flip CutOut Full Augmentation
Augmentation

0

20

40

60

80

Ac
cu

ra
cy

 (%
)

74.81
80.02

75.80
78.74

75.24

85.55

75.89

83.22

76.02
78.76 78.77

86.09

Model
ResNet18
ECN

(i) 100% training set

No Augmentation Random Crop Color Jitter Horizontal Flip CutOut Full Augmentation
Augmentation

0

10

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

22.75

30.00

22.13
25.01 24.76

33.53

40.49
43.75

39.55
42.09

39.51

47.99

Model
ResNet18
ECN

(ii) 1% training set

Figure 3. The result of ResNet18 and Efficient-CapsNet when trained
with different augmentation strategies in a full data and limited data
environment.

5.3. Efficient-CapsNet and distributional generalization

To further support our experiments and offer greater insight
into the generalization of Efficient-CapsNet, we use the con-
cept of "distributional generalization" (Nakkiran & Bansal,
2020). The authors state two identical classifiers, trained un-
der the same settings on disjoint training sets, should produce
outputs belonging to the same distribution. Using this, they
propose methods for assessing generalization that emphasize
the distribution of the output of a set of classifiers rather than
aggregated values such as average classification accuracy.

Since we used five training runs for each network and our
small data regime was manufactured through sampling without
replacement, we obtained five output distributions for each
of our experiments. We use Nakkiran & Bansal (2020)’s
agreement property for our study.

Definition (Agreement Property): For classifiers f1, f2 trained
on disjoint train sets S 1, S 2 sampled from some distribution
D, the test accuracy of f1 is close to its agreement probability
with f2. That is,

P
(

f1(xxx) = y
)
≈ P

(
f1(xxx) = f2(xxx)

)
.

By considering the definition over an entire set with N samples
xxxn, we define the agreement probability between two trained
networks f1, f2 to be

A f1, f2 =
1
N

N∑
n

1 f1(xxxn)= f2(xxxn). (7)

Fig 4(i) shows the agreement probability A f1, f2 between each
pair of classifiers f1, f2 and their average accuracy. We con-
sider on our baseline and Efficient-CapsNet in order to focus
solely on our first research question.

When full augmentation is applied during training (see Fig.
4(i)), all points from the 10% data regime (600 samples per
class) are clustered for the baseline and ECN. This suggests
both possess reasonable distributional generalization. In con-
trast, the models display different characteristics in the 1%
data regime (60 samples per class). Data points associated
with the baseline are distributed whilst those associated with
ECN remain tightly clustered. This is significant since even in
an extremely low data scenario, where accuracy is lower than

40%, Efficient-CapsNet continues to maintain distributional
generalization.

However, we obtain different results in the absence of aug-
mentation; see Fig. 4(ii). Unlike the full augmentation setting,
baseline classifiers trained in the 10% regime lack distribu-
tional generalization, evidenced by the wide spread of points.
This provides evidence that ECN alleviates the need for aug-
mentation in order to generalize in the small-data setting.

5.4. Discussion

It is explained in Sec 4 that, given our input size, CapsNet
produces Np = 2048 primary capsules and Efficient-CapsNet
produces Np = 16 primary capsules. A graphical demonstra-
tion of their formation is provided in 5 and 6. It is remarkable
Efficient-CapsNet outperforms CapsNet given the reduction in
parameters by a factor of 128 in PrimaryCaps (and 47 across
the network). Scaled-dot product attention has achieved ex-
cellent results in other fields (Vaswani et al., 2017; Devlin
et al., 2019; Gong et al., 2021) and it is no different here. We
suggest employing self-attention in the routing mechanism
enables extremely informed decisions regarding the contribu-
tion of low-level capsules to high-level capsules. As a result,
learning is significantly boosted despite the heavy reduction
in parameters, even in a small-data regime.

Despite the results suggesting Efficient-CapsNet promises a
favourable alternative to CNNs in the low-parameter-small-
data setting, we must consider our results in context. Achieve-
ment of 48.12% accuracy on the validation set when trained
on 60 samples is far from the quality necessary to roll out
the framework in developing countries’ healthcare systems.
Especially considering results here were obtained on CIFAR10
rather than more challenging medical datasets.

As outlined in Sec 1, to fill the research gap an assessment
of Efficient-CapsNet’s scalability must be performed. The
reduced number of parameters in each layer will allow layers
of attention routed capsules to be stacked (Mazzia et al., 2021),
much like stacking in transformers (Vaswani et al., 2017). The
highly parallelizable nature of self-attention routing means
an increase in depth will not come at the expense of compu-
tational cost. To perform this investigation, we would treat
depth as a hyperparameter and find optimal values for all other
hyperparameters using initial convergence over 100 epochs,
similar to here.

6. Conclusions
We found Efficient-CapsNet to outperform a low-parameter
CNN, CapsNet, and ResNet18 in terms of classification accu-
racy in all data regimes. Most importantly, the gap between
Efficient-CapsNet is most pronounced when the most extreme
limitation on dataset size is presented and augmentation is
absent. Efficient-CapsNet offers impressive distributional gen-
eralization in such a setting, even when classification accuracy
is poor. Given large datasets and suitable augmentation strate-
gies are hard to obtain for medical imaging datasets, there
is very strong evidence to suggest Efficient-CapsNet should
be pursued in the medical imaging community in developing
countries.

Augmentation is found to benefit Efficient-CapsNet, and we
recommend it is used in medical imaging tasks where possible.

20 30 40 50 60 70
Agreement (%)

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

Model
Baseline
ECN
Sample Size
10%
5%
1%

(i) Full augmentation

20 30 40 50 60 70
Agreement (%)

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

Model
Baseline
ECN
Sample Size
10%
5%
1%

(ii) No augmentation

Figure 4. Agreement probability, as defined in (7), versus average
classification accuracy obtained by pairwise comparison of identically
trained models on disjoint training sets.

Improvements in performance vary slightly with sample size,
but this result is not considered significant.

As hinted in the introduction and outlined in Sec. 5.4, we
believe further investigations should focus on scaling capsule
networks. We used CIFAR10 to assess Efficient-CapsNet’s
ability to generalize when typical healthcare data challenges
are imposed. Having obtained impressive results, we now
suggest Efficient-CapsNet is scaled and applied to specific
medical datasets. Rajasegaran et al. (2019) tried to scale the
original CapsNet, but we believe self-attention routing should
instead be the fundamental building block. The low number of
parameters demanded and relatively relaxed training regime
(in terms of computation) offers hope that the network can be
scaled where computing resource is limited.

References
Abadi, Martín, Agarwal, Ashish, Barham, Paul, Brevdo, Eu-

gene, Chen, Zhifeng, Citro, Craig, Corrado, Greg S., Davis,
Andy, Dean, Jeffrey, Devin, Matthieu, Ghemawat, San-
jay, Goodfellow, Ian, Harp, Andrew, Irving, Geoffrey, Is-
ard, Michael, Jia, Yangqing, Jozefowicz, Rafal, Kaiser,
Lukasz, Kudlur, Manjunath, Levenberg, Josh, Mané, Dan-
delion, Monga, Rajat, Moore, Sherry, Murray, Derek, Olah,
Chris, Schuster, Mike, Shlens, Jonathon, Steiner, Benoit,
Sutskever, Ilya, Talwar, Kunal, Tucker, Paul, Vanhoucke,
Vincent, Vasudevan, Vijay, Viégas, Fernanda, Vinyals, Oriol,
Warden, Pete, Wattenberg, Martin, Wicke, Martin, Yu,
Yuan, and Zheng, Xiaoqiang. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. URL
https://www.tensorflow.org/. Software available from ten-
sorflow.org.

Assiri, Yahia. Stochastic optimization of plain convolutional
neural networks with simple methods, 2020.

Byerly, Adam, Kalganova, Tatiana, and Dear, Ian. No routing
needed between capsules, 2021.

Chen, Liang-Chieh, Papandreou, George, Schroff, Florian, and
Adam, Hartwig. Rethinking atrous convolution for seman-
tic image segmentation. arXiv preprint arXiv:1706.05587,
2017.

Chollet, François. Xception: Deep learning with depthwise
separable convolutions. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp.
1251–1258, 2017.

Deng, Jia, Dong, Wei, Socher, Richard, Li, Li-Jia, Li, Kai,
and Fei-Fei, Li. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pp. 248–255. Ieee, 2009.

Devlin, Jacob, Chang, Ming-Wei, Lee, Kenton, and Toutanova,
Kristina. BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–
4186, Minneapolis, Minnesota, June 2019. Association for
Computational Linguistics. doi: 10.18653/v1/N19-1423.
URL https://aclanthology.org/N19-1423.

Dosovitskiy, Alexey, Beyer, Lucas, Kolesnikov, Alexander,
Weissenborn, Dirk, Zhai, Xiaohua, Unterthiner, Thomas,
Dehghani, Mostafa, Minderer, Matthias, Heigold, Georg,
Gelly, Sylvain, et al. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Glorot, Xavier and Bengio, Yoshua. Understanding the diffi-
culty of training deep feedforward neural networks. In
Teh, Yee Whye and Titterington, Mike (eds.), Proceed-
ings of the Thirteenth International Conference on Arti-
ficial Intelligence and Statistics, volume 9 of Proceedings
of Machine Learning Research, pp. 249–256, Chia Laguna
Resort, Sardinia, Italy, 13–15 May 2010. PMLR. URL
https://proceedings.mlr.press/v9/glorot10a.html.

Gong, Yuan, Chung, Yu-An, and Glass, James. Ast: Audio
spectrogram transformer, 2021.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pp. 770–778, 2016.

Hinton, Geoffrey E, Krizhevsky, Alex, and Wang, Sida D.
Transforming auto-encoders. In Artificial Neural Networks
and Machine Learning–ICANN 2011: 21st International
Conference on Artificial Neural Networks, Espoo, Fin-
land, June 14-17, 2011, Proceedings, Part I 21, pp. 44–51.
Springer, 2011.

Hinton, Geoffrey E, Sabour, Sara, and Frosst, Nicholas. Matrix
capsules with em routing. In International conference on
learning representations, 2018.

Jiménez-Sánchez, Amelia, Albarqouni, Shadi, and Mateus,
Diana. Capsule networks against medical imaging data
challenges. In Intravascular Imaging and Computer As-
sisted Stenting and Large-Scale Annotation of Biomedical
Data and Expert Label Synthesis: 7th Joint International
Workshop, CVII-STENT 2018 and Third International Work-
shop, LABELS 2018, Held in Conjunction with MICCAI
2018, Granada, Spain, September 16, 2018, Proceedings 3,
pp. 150–160. Springer, 2018.

Jnawali, Kamal, Arbabshirani, Mohammad R, Rao, Naval-
gund, and Patel, Alpen A. Deep 3d convolution neural
network for ct brain hemorrhage classification. In Medical
Imaging 2018: Computer-Aided Diagnosis, volume 10575,
pp. 307–313. SPIE, 2018.

Kauppi, Tomi, Kalesnykiene, Valentina, Kamarainen, Joni-
Kristian, Lensu, Lasse, Sorri, Iiris, Raninen, Asta, Vouti-
lainen, Raija, Uusitalo, Hannu, Kälviäinen, Heikki, and
Pietilä, Juhani. The diaretdb1 diabetic retinopathy database
and evaluation protocol. In BMVC, volume 1, pp. 10, 2007.

Kolesnikov, Alexander, Beyer, Lucas, Zhai, Xiaohua,
Puigcerver, Joan, Yung, Jessica, Gelly, Sylvain, and
Houlsby, Neil. Big transfer (bit): General visual repre-
sentation learning. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part V 16, pp. 491–507. Springer, 2020.

Koresh, H. James Deva, Chacko, Shanty, and Periyanayagi,
M. A modified capsule network algorithm for oct corneal
image segmentation. Pattern Recognition Letters, 143:104–
112, 2021. ISSN 0167-8655. doi: https://doi.org/10.1016/j.
patrec.2021.01.005. URL https://www.sciencedirect.com/
science/article/pii/S0167865521000155.

Krizhevsky, Alex, Hinton, Geoffrey, et al. Learning multiple
layers of features from tiny images. 2009.

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E.
Imagenet classification with deep convolutional neural net-
works. In Pereira, F., Burges, C.J., Bottou, L., and Wein-
berger, K.Q. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 25. Curran Associates, Inc., 2012.
URL https://proceedings.neurips.cc/paper_files/paper/2012/
file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

LeCun, Yann, Bottou, Léon, Bengio, Yoshua, and Haffner,
Patrick. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

https://www.tensorflow.org/
https://aclanthology.org/N19-1423
https://proceedings.mlr.press/v9/glorot10a.html
https://www.sciencedirect.com/science/article/pii/S0167865521000155
https://www.sciencedirect.com/science/article/pii/S0167865521000155
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

Li, Qing, Cai, Weidong, Wang, Xiaogang, Zhou, Yun, Feng,
David Dagan, and Chen, Mei. Medical image classification
with convolutional neural network. In 2014 13th interna-
tional conference on control automation robotics & vision
(ICARCV), pp. 844–848. IEEE, 2014.

Lin, Ancheng, Li, Jun, and Ma, Zhenyuan. On learning and
learned data representation by capsule networks. arXiv
preprint arXiv:1810.04041, 2018.

Loshchilov, Ilya and Hutter, Frank. SGDR: Stochastic gradient
descent with warm restarts. In International Conference on
Learning Representations, 2017. URL https://openreview.
net/forum?id=Skq89Scxx.

Loshchilov, Ilya and Hutter, Frank. Decoupled weight decay
regularization. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?
id=Bkg6RiCqY7.

Mazzia, Vittorio, Salvetti, Francesco, and Chiaberge, Marcello.
Efficient-capsnet: Capsule network with self-attention rout-
ing. Scientific reports, 11(1):14634, 2021.

Mobiny, Aryan and Van Nguyen, Hien. Fast capsnet for lung
cancer screening. In Medical Image Computing and Com-
puter Assisted Intervention–MICCAI 2018: 21st Interna-
tional Conference, Granada, Spain, September 16-20, 2018,
Proceedings, Part II 11, pp. 741–749. Springer, 2018.

Nakkiran, Preetum and Bansal, Yamini. Distributional gen-
eralization: A new kind of generalization. arXiv preprint
arXiv:2009.08092, 2020.

Pan, Chenbin and Velipasalar, Senem. Pt-capsnet: A novel
prediction-tuning capsule network suitable for deeper ar-
chitectures. In 2021 IEEE/CVF International Conference
on Computer Vision (ICCV), pp. 11976–11985, 2021. doi:
10.1109/ICCV48922.2021.01178.

Patrick, Mensah Kwabena, Adekoya, Adebayo Felix, Mighty,
Ayidzoe Abra, and Edward, Baagyire Y. Capsule networks–
a survey. Journal of King Saud University-computer and
information sciences, 34(1):1295–1310, 2022.

Rajasegaran, Jathushan, Jayasundara, Vinoj, Jayasekara, San-
daru, Jayasekara, Hirunima, Seneviratne, Suranga, and Ro-
drigo, Ranga. Deepcaps: Going deeper with capsule net-
works. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 10725–10733,
2019.

Ramasinghe, Sameera, Athuraliya, CD, and Khan, Salman H.
A context-aware capsule network for multi-label classifi-
cation. In Proceedings of the European Conference on
Computer Vision (ECCV) Workshops, pp. 0–0, 2018.

Recht, Benjamin, Roelofs, Rebecca, Schmidt, Ludwig, and
Shankar, Vaishaal. Do cifar-10 classifiers generalize to
cifar-10?, 2018.

Recht, Benjamin, Roelofs, Rebecca, Schmidt, Ludwig, and
Shankar, Vaishaal. Do ImageNet classifiers generalize to
ImageNet? In Chaudhuri, Kamalika and Salakhutdinov,
Ruslan (eds.), Proceedings of the 36th International Con-
ference on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pp. 5389–5400. PMLR, 09–15

Jun 2019. URL https://proceedings.mlr.press/v97/recht19a.
html.

Ren, Hao, Su, Jianlin, and Lu, Hong. Evaluating generaliza-
tion ability of convolutional neural networks and capsule
networks for image classification via top-2 classification.
arXiv preprint arXiv:1901.10112, 2019.

Ren, Shaoqing, He, Kaiming, Girshick, Ross, and Sun, Jian.
Faster r-cnn: Towards real-time object detection with re-
gion proposal networks. Advances in neural information
processing systems, 28, 2015.

Ronneberger, Olaf, Fischer, Philipp, and Brox, Thomas. U-net:
Convolutional networks for biomedical image segmenta-
tion. In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference,
Munich, Germany, October 5-9, 2015, Proceedings, Part III
18, pp. 234–241. Springer, 2015.

Sabour, Sara, Frosst, Nicholas, and Hinton, Geoffrey E. Dy-
namic routing between capsules. Advances in neural infor-
mation processing systems, 30, 2017.

Simonyan, Karen and Zisserman, Andrew. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Spanhol, Fabio Alexandre, Oliveira, Luiz S, Petitjean, Caro-
line, and Heutte, Laurent. Breast cancer histopathological
image classification using convolutional neural networks.
In 2016 international joint conference on neural networks
(IJCNN), pp. 2560–2567. IEEE, 2016.

Srivastava, Nitish, Hinton, Geoffrey, Krizhevsky, Alex,
Sutskever, Ilya, and Salakhutdinov, Ruslan. Dropout: A
simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15(56):1929–1958,
2014. URL http://jmlr.org/papers/v15/srivastava14a.html.

Tan, Mingxing and Le, Quoc V. Efficientnetv2: Smaller mod-
els and faster training, 2021.

Vaswani, Ashish, Shazeer, Noam, Parmar, Niki, Uszkoreit,
Jakob, Jones, Llion, Gomez, Aidan N, Kaiser, Łukasz, and
Polosukhin, Illia. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

Veta, Mitko, Heng, Yujing J., Stathonikos, Nikolas, Bejnordi,
Babak Ehteshami, Beca, Francisco, Wollmann, Thomas,
Rohr, Karl, Shah, Manan A., Wang, Dayong, Rousson,
Mikael, Hedlund, Martin, Tellez, David, Ciompi, Francesco,
Zerhouni, Erwan, Lanyi, David, Viana, Matheus, Kovalev,
Vassili, Liauchuk, Vitali, Phoulady, Hady Ahmady, Qaiser,
Talha, Graham, Simon, Rajpoot, Nasir, Sjöblom, Erik,
Molin, Jesper, Paeng, Kyunghyun, Hwang, Sangheum, Park,
Sunggyun, Jia, Zhipeng, Chang, Eric I-Chao, Xu, Yan, Beck,
Andrew H., van Diest, Paul J., and Pluim, Josien P.W. Pre-
dicting breast tumor proliferation from whole-slide images:
The tupac16 challenge. Medical Image Analysis, 54:111–
121, 2019. ISSN 1361-8415. doi: https://doi.org/10.1016/j.
media.2019.02.012. URL https://www.sciencedirect.com/
science/article/pii/S1361841518305231.

Vinyals, Oriol, Blundell, Charles, Lillicrap, Timothy, Wierstra,
Daan, et al. Matching networks for one shot learning. Ad-
vances in neural information processing systems, 29, 2016.

https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://proceedings.mlr.press/v97/recht19a.html
https://proceedings.mlr.press/v97/recht19a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://www.sciencedirect.com/science/article/pii/S1361841518305231
https://www.sciencedirect.com/science/article/pii/S1361841518305231

Wan, Li, Zeiler, Matthew, Zhang, Sixin, Le Cun, Yann, and
Fergus, Rob. Regularization of neural networks using drop-
connect. In International conference on machine learning,
pp. 1058–1066. PMLR, 2013.

Wood, Luke, Tan, Zhenyu, Ian, Stenbit, Zhu, Scott, Chollet,
François, et al. Kerascv. https://github.com/keras-team/
keras-cv, 2022.

Wu, Haiping, Xiao, Bin, Codella, Noel, Liu, Mengchen, Dai,
Xiyang, Yuan, Lu, and Zhang, Lei. Cvt: Introducing con-
volutions to vision transformers. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 22–31, 2021.

Xi, Edgar, Bing, Selina, and Jin, Yang. Capsule network perfor-
mance on complex data. arXiv preprint arXiv:1712.03480,
2017.

Zhao, Zhen, Kleinhans, Ashley, Sandhu, Gursharan, Patel,
Ishan, and Unnikrishnan, K. P. Capsule networks with
max-min normalization, 2019.

https://github.com/keras-team/keras-cv
https://github.com/keras-team/keras-cv

A. Results of experiments

Sample size (%) Set Baseline ResNet18 CapsNet ECN Gap

100 Val 85.28 85.28 79.51* 86.11 0.83
Test 74.27 73.21 65.45 75.34 1.07

10 Val 68.24 65.48 64.03 71.43 3.19
Test 54.69 51.16 50.38 57.91 3.22

5 Val 62.19 53.13 58.40 66.12 3.93
Test 48.96 40.95 45.56 53.26 4.30

1 Val 39.73 35.49 41.60 48.12 8.39
Test 31.05 27.88 32.19 37.90 6.85

Table 2. Classification accuracy (%) for models trained on CIFAR10 validation set (Krizhevsky et al., 2009) and CIFAR10 test set (Recht et al.,
2018; 2019). Gap is the difference between Efficient-CapsNet and the baseline. * indicates we were unable to reproduce a result stated in the
original paper. The full training set is sampled without replacement to produce disjoint training sets when sample size < 100%.

Sample size (%) Augmentation ResNet18 ECN Gap

100 None 74.91 75.93 1.02

100 Random Crop 80.02 83.37 3.35

Color Jitter 75.80 76.16 0.36

Horizontal Flip 78.74 78.57 -0.17

Cutout 75.24 79.32 4.08

100 All 85.55 86.34 0.79

1 None 22.75 40.43 17.68

1 Random Crop 30.00 43.75 13.75

Color Jitter 22.13 39.71 17.58

Horizontal Flip 25.01 42.24 17.23

Cutout 24.76 38.40 13.64

1 All 33.53 48.02 14.49

Table 3. Classification accuracy (%) for models trained on CIFAR10 validation set (Krizhevsky et al., 2009) with varying augmentation
strategies. Gap is the difference between Efficient-CapsNet and ResNet18. The full training set is sampled without replacement to produce
disjoint training sets when sample size < 100%.

B. Model architectures

32

32

3

24

24

8

8

2048

8

256 256

8

2048

k =9
s = 1
f = 256

k =9
s = 1
f = 256

ReshapeConvConv Squash

PrimaryCapsCNNInput

UX0

XCNN

u i

Figure 5. The model architecture for the CNN and PrimaryCaps components in CapsNet shows the formation of 2048 primary capsules with
dimension 8 (given the 32 × 32 image size in CIFAR10).

16

8

U

16

8

ReshapeSquash

u i

32

32

28

28

26

26

1

1

32 64

k = 5
s = 1
f = 32

k = 3
s = 1
f = 64

ConvConv

PrimaryCaps

CNNInput

128

X0

24

24

64

k = 3
s = 1
f = 64

Conv

11

11

128

k = 3
s = 2
f = 128

Conv

X1 X2 X3 XCNN

Depthwise
Seperable
Convolution

3

Figure 6. The model architecture for the CNN and PrimaryCaps components in Efficient-CapsNet shows the formation of 16 primary capsules
with dimension 8 (given the 32 × 32 image size in CIFAR10). The depthwise separable convolution operation is explained in 4.3.1.

C. Other figures

Figure 7. Dimension perturbations; Figure 4 in Sabour et al. (2017). The visualization shows the reconstruction after passing input samples
through the capsule-based encoder and corresponding decoder. Tweaking each dimension of the encoded embedding by intervals of 0.05 in the
range [−0.25, 0.25] shows the correspondence between a dimension of the output vector and the appearance of the image.

