
Intelligent optimization of borehole geophysics

planning for critical mineral exploration

Benjamin Barlow

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

School of Informatics

University of Edinburgh

2024



Abstract

The transition to a carbon-free energy grid and transportation network hinges on accel-

erating the discovery of the battery metals: copper, nickel, cobalt, and lithium. Mineral

explorers infer the presence of subsurface mineral deposits by relying on geophysical

data collected above the surface. Airborne geophysical surveys offer expansive cover-

age and rapid access of vast, remote areas. Aircraft conducting geophysical surveys

traditionally fly in straight lines at fixed intervals ranging from 50 m to 2 km. This

comprehensive approach permits detailed geophysical maps but accumulates significant

flying distances which come at a substantial financial and time cost.

In environmental monitoring, sequential data acquisition techniques that optimize

locations for data collection while minimizing resource expenditure have become

prevalent. These techniques allow mobile sensors to use observations to form a belief

of the world, and in turn, use their current belief of the world to inform the path taken

to collect observations in the future. The partially observable Markov decision process

(POMDP) framework has demonstrated considerable promise in guiding path planning

decisions in robotics and has recently been applied to subsurface applications where

noisy observations are used to infer the underlying state. Building on this foundation,

we propose a POMDP tailored to optimize the flight paths of fixed-wing aircraft in

airborne geophysical surveys. We evaluate our approach using simulated geophysical

maps, comparing its performance to traditional grid-based methods in terms of distance

flown and resulting profitability.

The results demonstrate that our approach can accurately and confidently estimate

the true state of the world in significantly less survey distance. However, its performance

is inconsistent across all scenarios and therefore we suggest an alternative model

formulation for future work.

i



Research Ethics Approval

This project was planned in accordance with the Informatics Research Ethics policy. It

did not involve any aspects that required approval from the Informatics Research Ethics

committee.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Benjamin Barlow)

ii



Acknowledgements
First, I would like to thank my undergraduate dissertation supervisor, Ioannis Kos-

midis, at the University of Warwick. First impressions are crucial, and the collaborative

relationship he fostered during our project in 2020 provided me with a remarkable

introduction to research, igniting a passion for academic exploration that ultimately led

me to seek a master’s dissertation project that excited me profoundly.

Next, I wish to thank Nigel Goddard for his guidance during my decision to switch

to a part-time master’s program. His insights gave me the confidence that this change

would not only allow for part-time employment but also deepen my understanding of

my academic interests. The free time I gained in the summer of 2023, which would

not have been the case had I been a full-time student, allowed me to explore global

opportunities for research collaboration. This led to my discovery of KoBold Metals

and their partnership with Mineral-X at Stanford University. I am deeply grateful to

David Zhen Yin of Mineral-X for responding to my cold email and establishing a

relationship that made my project possible. Moreover, David designed a project that

perfectly aligned my technical skills in artificial intelligence with my passion for the

global clean energy transition. I absolutely loved the project!

My heartfelt thanks go to Robert Moss and Mykel Kochenderfer, whose support

transformed the first three weeks of my project. Robert assured me that if I made the

effort to visit Stanford, his colleagues at the Stanford Intelligent Systems Laboratory

(SISL) would generously share their POMDP expertise in person. This gave me the

confidence that traveling across the globe would be well worth it. Upon my arrival,

Mykel warmly welcomed me to the SISL family by inviting me to their weekly lab

meeting, which helped me quickly integrate with the team and set the stage for a

productive and enjoyable stay. Besides the professional gains, I must say, June in

California is somewhat superior to June in Edinburgh, so thank you both.

I would like to give special recognition to Dylan Asmar from the SISL family, who

was instrumental in guiding me through the world of POMDPs and POMDP solvers.

As someone with no prior experience in Julia or POMDPs, I had numerous questions

early on, ranging from understanding his workflow in Julia to grasping the complex

mathematical foundations of POMDPs and their solvers. Dylan always welcomed my

questions and answered them with a smile—a quality I respect massively.

I am grateful to John Mern, a key author of works cited in this dissertation. Despite

his demanding role as CEO of an early-stage startup, John, a PhD graduate of SISL,

generously took the time to meet with me and discuss my project over coffee. Both

iii



his experience in industrial mineral exploration at KoBold Metals and his advanced

POMDP knowledge from his PhD makes him an expert in this field. As a newcomer

to both mineral exploration and POMDPs, I valued the opportunity to freely ask him

questions extremely highly.

My final thanks to the SISL community go to the authors and maintainers of the

POMDP.jl ecosystem. The codebase for this project was built upon your foundational

work, and I am truly grateful for your contributions. Furthermore, I extend my gratitude

to Jef Caers and, once again, John Mern, for implementing a mineral exploration

POMDP in Julia that served as a critical foundation for this project. Without your

efforts, this project would not have been possible to complete in 3 months.

I would also like to thank Elliot Fosong, a PhD student at the University of Edin-

burgh, for generously offering his time to discuss POMDPs and for reassuring me that

I had someone in Edinburgh ready to provide supervision if I encountered difficulties

with my project’s implementation in Julia. Although I quickly became comfortable

with Julia, knowing that Elliot was available for support provided me with great peace

of mind throughout. Additionally, his suggestions for improving the reward function,

particularly through potential-based reward shaping, will be implemented if this work

is extended in the future.

Most importantly, I would like to express my deepest gratitude to my supervisors,

each of whom have already been acknowledged for their respective contributions beyond

direct supervision. Nigel Goddard provided feedback on the structure of my report and

took the role of lead supervisor of the project. David Zhen Yin shared his vision for

the project in its early stages and kindly guided me in understanding the intricacies

of geophysics and mineral exploration. Finally, Robert Moss has been an outstanding

supervisor throughout—from in person meetings at Stanford to online discussions after

my return to Edinburgh, and even during his travels to conferences. His key suggestion

to model my agent as a plane with a continuous flying path significantly enhanced the

realism of my project. Robert operated with patience, genuine care, and a supportive

tone from start to finish; I hope our professional paths cross again someday. Thank you,

Nigel, David, and Robert.

iv



Table of Contents

1 Introduction 1

2 Background work 3
2.1 Geophysical data acquisition . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Sequential data acquisition . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Sensor networks . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.2 Adaptive informative path planning . . . . . . . . . . . . . . 5

2.2.3 Myopic and nonmyopic planning . . . . . . . . . . . . . . . 6

2.3 Particle filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Partially observable Markov decision process . . . . . . . . . . . . . 7

2.4.1 Model definition . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4.2 Solving a partially observable Markov decision process . . . . 9

2.4.3 POMCPOW . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Methodology 15
3.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Agent dynamics model . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Problem setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.1 Problem specific formulation . . . . . . . . . . . . . . . . . . 16

3.3.2 Problem specific heuristics . . . . . . . . . . . . . . . . . . . 19

3.4 A robust noise mechanism . . . . . . . . . . . . . . . . . . . . . . . 20

3.5 Belief representation and updating . . . . . . . . . . . . . . . . . . . 21

3.5.1 Belief representation . . . . . . . . . . . . . . . . . . . . . . 21

3.5.2 Belief updating . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6 Decision making . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.7 Illustrative examples . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.7.1 Intelligent agent . . . . . . . . . . . . . . . . . . . . . . . . 26

v



3.7.2 Traditional agent . . . . . . . . . . . . . . . . . . . . . . . . 28

3.7.3 Financial comparison . . . . . . . . . . . . . . . . . . . . . . 29

4 Experiments 30
4.1 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3.1 Traditional agent . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3.2 Intelligent agent . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Financial analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Conclusions & Discussion 38
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Discussion and future work . . . . . . . . . . . . . . . . . . . . . . . 39

Bibliography 41

A Gaussian processes 48

B Spherical variogram 50

C Map colour scale 51

D POMCPOW Example Tree 52

vi



Chapter 1

Introduction

To permit the global transition to a carbon-free power grid and transportation network,

we must rapidly increase the discovery rate of the battery metals: copper, nickel, cobalt,

and lithium (Campbell, 2014; Mudd and Jowitt, 2014; Turner, 2022). Extracting ore

deposits for metal production is dependent on first understanding geological structures

and their relationships (Cox, 2005). Due to mineral explorers traditionally searching for

evidence of mineralization above the surface, deposits shallow in the subsurface have

progressively depleted in well-explored areas (Davies et al., 2021). Ensuring continued

discoveries now requires methods that provide insights into deep subsurface structures

lacking surficial evidence. Decisions to mine or abandon regions are ultimately based

on drilling campaigns, which validate subsurface composition and, in turn, a prospective

ore’s grade and volume. Before deciding where to drill boreholes1, or even whether to

drill at all, geophysical data collected above the surface provides preliminary indications

of ore presence through subsurface magnetic, resistivity, or density anomalies2. Gravity

and magnetic methods are particularly popular in mineral exploration since they lend

themselves to observation from airborne sensors (Hinze et al., 2013). Traditionally,

fixed-wing aircraft fly in predefined straight lines at fixed intervals (see Fig. 2.1) to

survey entire areas ranging in scale from individual prospects to continental-sized

regions (Hinze et al., 2013). We argue that this conventional, fixed-pattern approach

to geophysical data acquisition is not the most efficient strategy—in terms of cost and

time—for identifying high-value mineral prospects. We suggest that more adaptive,

data-driven methods could significantly ease the financial and time burden of mineral

1In mineral exploration, boreholes are holes drilled in the subsurface to extract minerals for further
analysis.

2For example, a gravity (density) anomaly—a reading that differs from Earth’s gravitational field—is
caused by lateral variations in rock density in the subsurface.
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Chapter 1. Introduction 2

exploration.

Geophysical data acquisition adheres to a sequential process: sensor readings are

recorded in time-ordered sequences with each observation tied to a specific location.

The challenge of determining the optimal sequence for collecting data has been stud-

ied extensively. These strategies maximize learning opportunities while minimizing

resource (time, energy, or financial) expenditure. Applications of these techniques to

environmental sensing3 tasks include wind field reconstruction (Yildiz et al., 2023) and

ocean monitoring (Zhang et al., 2023). However, there is a notable paucity of studies

leveraging sequential data acquisition methods in the field of geophysics.

A partially observable Markov decision process (POMDP; see Section 2.4) is a

model formulation for decision making when an agent cannot reliably identify the

underlying environment state (Kaelbling et al., 1998). They have proven effective

in modelling subsurface state uncertainty in applications such as carbon capture and

storage (Corso et al., 2022) and groundwater contamination remediation (Wang et al.,

2022). State uncertainty is applicable in the field of geophysics, where the true state of

the subsurface is unknown because anomaly amplitudes decrease with source depth,

leading to the challenge that large, deep ore bodies and small, shallow deposits can

produce indistinguishable geophysical readings at the surface (Hinze et al., 2013).

POMDPs have likewise demonstrated effectiveness in information-driven path planning4

for both robotics (Lauri et al., 2022) and environmental monitoring (Bai et al., 2021).

By integrating the framework’s ability to handle subsurface state uncertainty and govern

path planning, we define a bespoke POMDP tailored for adapting a fixed-wing aircraft’s

flight path in real time in response to geophysical observations.

Our central hypothesis is that adaptively planning geophysical survey flight paths

using an information-driven approach will reduce the flying distance required and

associated costs in mapping geophysical anomalies to inform borehole placement. The

primary contribution of this work is to demonstrate to the geophysics community the

financial value of applying artificial intelligent techniques, specifically POMDP-based

methods, to geophysical data acquisition. Our POMDP-based approach, tested against

traditional grid surveys on 150 simulated maps, demonstrates nearly double profitability

under fixed survey budgets by significantly reducing the distance flown.

3Environmental sensing is a process by which an environmental attribute of interest is collected from
different locations so that a continuous map of its levels and variations can be constructed (Bai et al.,
2021).

4Information-driven path planning is the process by which an agent leverages information perceived
from an environment to look ahead and plan actions for the subsequent steps (Bai et al., 2021).



Chapter 2

Background work

2.1 Geophysical data acquisition

As outlined in Chapter 1, discoveries of minerals for metal production are dependent on

first understanding geological structures and their relationships. Geophysicists capture

the spatial distribution of physical properties of the Earth’s subsurface by constructing

geophysical maps. Geophysical data, such as magnetic, electrical, electromagnetic,

radiometric, and gravity, can be collected on land using hand-held devices, on board

ships in offshore exploration, or by conducting airborne surveys with planes and heli-

copters (Lyatsky, 2010). Following data acquisition in a subset of locations, the entire

map can be interpolated through multiple-point geostatistics (Journel and Zhang, 2006;

Mariethoz and Caers, 2014) or spatial-covariance based methods (e.g., Gaussian process

regression; see App. A). The map is used to decide whether to abandon the region

being explored (NO-GO) or to perform a drilling campaign (GO). If the latter, material

from the subsurface is extracted—termed “borehole data acquisition”—and the ore’s

properties, such as grade and volume, are estimated to calculate its monetary value.

Acquiring data for mapping purposes on land presents a variety of challenges: re-

gions of interest can be hundreds of miles from human settlement; northern climates can

be covered by snow throughout winter and the potential need for air supply multiplies

costs astronomically; and land-use rules can present legal challenges too. Airborne

surveys are great solutions since they enable effortless access and rapid coverage. This

makes them a popular choice among mineral explorers; by October 2005, a popular

airborne gravity system named Falcon had flown 1 million km of surveys (almost

entirely for mineral exploration; Dransfield 2007), only six years after their first flight

in October 1999 (Dransfield et al., 2001).

3



Chapter 2. Background work 4

Figure 2.1: Radar sur-

vey paths flown over the

Thwaites and Pine Island

glaciers in West Antarctica.

Image credit: Fig. 1, Yin

et al. (2022). See Fig. 6 in

Oldenburg and Pratt (2007)

and Fig. 3 in Kebede and

Mammo (2021) for further

examples of grid-like flight

paths in airborne geophysi-

cal surveys.

The airborne survey literature offers advancements in geological modelling (Li and

Oldenburg, 2000; Olierook et al., 2020) alongside efforts to enhance data quality through

post-processing (Chen and Macnae, 1997; Kass and Li, 2008) and next-generation

instrumentation (Tryggvason et al., 2004). However, there has been no attempt to marry

path planning advancements in robotics to geophysical survey planning.

Airborne surveys are always conducted by flying in predefined straight lines at

fixed intervals (see Fig. 2.1). In fact, Lyatsky (2010) include uniformity of coverage

(alongside ease of access and rapid coverage) when listing the advantages of airborne

surveys. However, we argue here that uniform coverage is not necessarily desirable. Our

work suggests that it’s economically naive to continue acquiring data in regions where

previously acquired data indicates the probability of mineral presence is extremely low.

If the ultimate decision is to make a GO/NO-GO decision, and previously acquired data

suffices to quantify uncertainty and make such a decision, it is not wise to continue

acquiring more data at a monetary and time cost. We aim to minimize the flying distance

(and associated costs) in making such a GO/NO-GO decision by applying sequential

data acquisition techniques to optimze data collection.
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2.2 Sequential data acquisition

2.2.1 Sensor networks

The issue of sensor networks (Caselton and Zidek, 1984; Krause et al., 2008) pertains to

identifying the most efficient positions for data acquisition in the monitoring of spatial

phenomena. Problems in this domain may be framed using a predetermined or an

adaptable number of sensors. In the fixed case, an objective function is maximized

adhering to the constraints on the number of available sensors. In the variable setting,

the optimal number of sensors and their locations are determined by balancing the

utility gain against the cost of deploying and maintaining additional sensors. Utility

gain can be quantified using techniques such as convex optimization (Joshi and Boyd,

2009), heuristic methods (Jung et al., 2015), or information theory (Pei et al., 2019);

the latter being a derivation of uncertainty measures like entropy or mutual information

(Trendafilova et al., 2001; Atallah et al., 2010; Hoffmann and Tomlin, 2010).

Global efforts to adapt to climate change consistently present applications with the

need to reconstruct entire data fields utilizing a finite number of sensors. An example in

environmental modelling is the work in ocean monitoring by (Zhang et al., 2023). They

reconstruct global atmosphere and hydrologic data by employing oceanographic buoys

and unmanned aerial vehicles (UAVs). In their case, the cost of additional sensors is a

function of location, since longer offshore distances correspond to higher deployment

and maintenance costs.

An aircraft conducting a geophysical survey can be considered a special case of a

sensor network with a single mobile sensor. The intersection of robotics and sensor

networks in the form of mobile sensors has been seen in wildfire monitoring (Julian and

Kochenderfer, 2020), active volcanoes surveillance (Astuti et al., 2009), and temperature

field reconstruction in a small lake (Zhang and Sukhatme, 2007).

2.2.2 Adaptive informative path planning

Whilst static sensors give rise to the question of optimal placement, robotic sensors give

rise to the question of optimal path planning. The agent’s goal is to maximize utility gain

while respecting resource constraints in terms of time or energy. For a comprehensive

review of environmental sensing and the topic’s intersection with path planning, see

Dunbabin and Marques (2012) and Bai et al. (2021), respectively. In general, utility

can correspond to uncertainty metrics or another more appropriate choice depending on
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the application. Resource constraints depend on the application but usually correspond

to time or energy (in our case, we impose financial and time constraints), and in some

cases, environmental phenomena too (e.g., Techy et al. (2009) subject UAVs to wind

disturbances when monitoring plant pathogen spores). Our aerial dynamics model (see

Section 3.2) ignores wind influences.

The literature refers to the above balance of utility gain under resource constraints

as the adaptive informative path planning (AIPP) problem (Singh et al., 2009; Lim

et al., 2016). Interacting with a partially observable environment1, an agent plans a

path that visits a subset of locations that are most “informative” conditioned on all

information acquired so far. Addressing the AIPP problem, which is NP-hard (Meliou

et al., 2007), has garnered considerable scholarly attention. Singh et al. (2009) and

Dunbabin and Marques (2012) extend the problem to the multi-robot case and Ott

et al. (2022) plan over multi-modal sensing capabilities through multiple sensor types

where more informative sensors come at an additional cost. Both extensions could be

relevant in geophysical data acquisition: a geophysical survey could be conducted by a

team of planes (multi-robot case) adapting their paths in real-time with multi-modality

introduced by combining borehole data acquisition and geophysical data acquisition

into a single optimization. However, here we focus on a single agent with a single

modality and leave these suggestions as a future consideration.

2.2.3 Myopic and nonmyopic planning

Planning can be defined as finding an optimal way to behave given a complete and

correct model of the world dynamics and a reward structure for certain behaviour

(Kaelbling et al., 1998). When planning for data acquisition, actions correspond to

collecting data at specific locations and times and rewards correspond to utility gain

examples outlined in Section 2.2. Planning methods that choose actions to maximize

the immediate reward according to some metric and disregard the long-term effects

of their choices are considered myopic. An example of a myopic method is Bayesian

optimization (Shahriari et al., 2016). On the other hand, nonmyopic methods, for ex-

ample, Monte Carlo planning and reinforcement learning (Sutton and Barto, 2018),

select actions that are believed to facilitate optimal behaviour both in the present and

the future. A similarity between both approaches is that they solve for each action only

after observing the results of previous actions. In essence, the past influences behaviour

1A partially observable environment is one where the agent cannot directly observe the state and must
instead make decisions based only on observations that are generated by the state.
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in both paradigms, but only nonmyopic methods consider future implications when de-

termining how to behave in the present. In their attempt to optimize borehole placement

for mineral exploration, Mern and Caers (2023) discuss the superior performance of

nonmyopic methods but acknowledge they typically come at increased computational

cost.

2.3 Particle filters

In geophysical data acquisition, observations such as magnetic or gravity readings serve

as indirect clues to the true state (mineral presence in the subsurface), but the true state

of the subsurface remains hidden throughout, leading to a setting of partial observability.

We term this “recovering state variables” from noisy sensor readings; a problem that has

received great attention in robotics literature (Barfoot, 2017). A rich class of methods

for recovering state variables are Bayes filters (Maybeck, 1982). They are probabilistic

in that they don’t just guess the state x, they calculate the probability that any state x

is correct. While parametric implementations of Bayes filters, such as Kalman filters

(Bar-Shalom et al., 2002), are well-established, a more versatile alternative is offered

by particle filters (Thrun, 2002). They instead estimate state variables through particles

(samples) in a nonparametric manner. This scheme maintains a probabilistic distribution

over the state, thereby accounting for noise and uncertainty seamlessly. Each particle in

the filter represents a hypothesis of the true state. The initial particle set is generated

by sampling from a prior distribution that encapsulates initial beliefs about the state,

though this preliminary representation is typically limited in accuracy. Nevertheless,

through a recursive update process, the particle filter progressively refines its estimation

as observations are received. The aim is for the particle set to converge to the desired

posterior distribution, which is achievable under certain conditions (see. Fig. 3.5 for

the approach we adopt to permit convergence). We use particle filters in this study to

represent the belief of a POMDP.

2.4 Partially observable Markov decision process

2.4.1 Model definition

Sequential decision-making problems have traditionally been conceptualized and ad-

dressed through the Markov decision process (MDP; Kaelbling et al. 1998). Such
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methods assume full observability; the underlying state of the environment (for exam-

ple, the configuration of a chess board) is known. In partially observable environments,

this assumption breaks down. By instead maintaining a probability distribution over

possible states, the partially observable Markov decision process (POMDP; Åström

1965) facilitates the resolution of sequential decision-making problems under state

uncertainty.

A POMDP is represented by a tuple (S,A,T,R,O,Z,γ). Similarly to the well-known

MDP tuple (S,A,T,R,γ): S is the set of possible states of the environment; A is the set

of possible actions the agent can take within the environment; T : S×A×S→ [0,1]

is the transition model2; R : S×A×S→ R is the reward function; and γ ∈ (0,1] is the

discount factor applied to the reward at each time step. The POMDP tuple has two

additional elements: the observation space O is the set of possible observations and the

observation model Z : O×A×S→ [0,1] is a conditional probability distribution over

the observation space given a state and action3.

At each timestep, the agent takes action a∈ A to move from state s∈ S to state s′ ∈ S

with probability defined by the state-transition function T (s′ | s,a). In the scenario

studied in this dissertation, the actions refer to manoeuvring the aircraft and the state

represents a geophysical anomaly, the location of the aircraft, and the measurements

taken thus far. The optimal action will account for its expected utility gain and its

impact on future decisions. Therefore, the intersection of planning with POMDPs is

a case of nonmyopic planning (unless γ = 0 and all future rewards are disregarded).

The agent receives an observation o ∈ O with probability Z(o | a,s′) and a reward

r = R(s,a,s′) ∈ R. The reward evaluates the impact of a given action on the total utility

of the action sequence that the agent strives to optimize. The time discount factor γ is

used to favour rewards that occur earlier in the process. Observations typically consist

of noisy measurements of a subset of the state. In our case, noise arises from other

minerals (non-ore minerals) in the subsurface causing minor geophysical anomalies

and sensor noise caused by aircraft motion. The action-observation sequence can either

continue indefinitely or terminate when a terminal state is reached. Whilst infinite

horizon sequential problems exist, our focus is a POMDP that terminates at a variable

timestep T , reflecting the GO/NO-GO decision made in mineral exploration.

In practice, a gravimeter mounted to a plane cannot directly observe the subsurface;

instead, it gathers observations that offer clues about what lies beneath. In the POMDP

2One can also define T : S×A×S→ R to be a density function such that
∫

T (s′ | a,s)ds′ = 1.
3One can also define Z : O×A×S→ R to be a density function such that

∫
Z(o | a,s′)do = 1.
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setting, this is termed state uncertainty. More formally, we say the agent is unaware of

the true state s, but instead uses the observation o to infer information on the state. The

agent maintains a probability distribution b over states (termed a “belief”) throughout

interaction with the environment. The update function of which is dependent on the

current belief, the observation o, and action a. In mathematical terms, bt is a function of

ot ,at and bt−1, and due to the recursive nature of belief updates, bt−1 itself incorporates

information provided by all previous actions and observations a1,o1, . . . ,at−1,ot−1.

The agent’s goal is to maximize the expected sum of discounted rewards by finding

an optimal policy. In the POMDP setting, a policy π maps beliefs to actions, contrasting

with the MDP scheme where policies directly map observable states to actions. Finding

an optimal way to behave, in our case, selecting the optimal survey path, is termed

“solving” the POMDP. Formally, given a belief b, “solving” the POMDP means finding

an optimal policy π∗ such that4

π
∗(b) = argmax

a
Qπ(b,a),

Qπ(b,a) = Eπ

[
T

∑
t=1

γ
tR(st−1,at ,st)

∣∣∣∣∣ b0 = b,a1 = a,π

]
,

where the “action-value” function Qπ(b,a) is the expected return of taking action a in

belief b and following policy π thereafter.

2.4.2 Solving a partially observable Markov decision process

2.4.2.1 Review of solver progress

POMDP solvers find optimal or near-optimal policies for decision making. The chal-

lenge of solving POMDPs is well-established, with foundational work dating back to

the 20th century, as demonstrated by studies in the field of robotics planning (Monahan,

1982; Lovejoy, 1991; White, 1991; Littman et al., 1995). In recent years, the field has

seen significant progress, with new algorithms making it possible to solve POMDPs

with up to 1056 states (Ye et al., 2016; Sunberg and Kochenderfer, 2018).

Irrespective of when they were developed, solvers fall into two main categories:

offline algorithms (Hauskrecht, 2000; Browne et al., 2012; Shani et al., 2013) compute

a policy for all possible belief states before starting policy execution, while online

4There exist many conventions for indexing the timestep of elements in a POMDP tuple. See the
caption in Fig. 3.1 for an explanation of the notation we use.
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algorithms (Ross et al., 2008; Browne et al., 2012; Ye et al., 2016; Sunberg and Kochen-

derfer, 2018) compute optimal actions only for the current belief state. Online solvers

are dominated by tree-based solvers (Browne et al., 2012; Ye et al., 2016; Sunberg

and Kochenderfer, 2018; Mern et al., 2021). For the remainder of this section, we

reflect on advancements in tree-based online solvers. We begin with the most basic tree

construction algorithm and progress to POMCPOW (Sunberg and Kochenderfer, 2018),

the algorithm employed in our work. We begin by assuming the state space S, action

space A, and observation space O are all discrete.

The foundational tree-based algorithm, forward search (Kochenderfer et al., 2022),

constructs a tree with the current belief5 bt as the root node and adds a node for each

action available to the agent. All possible observations o that could feasibly be observed

immediately following action a are then added to the tree. Action-observation layers

are added repeatedly until a predefined maximum depth is reached. The philosophy is

to evaluate the value of actions by averaging the rewards received in all branches below

a given action node.

This simple example highlights the curse of history: the number of action-observation

histories6 grows exponentially in the planning horizon. Assuming depth d, the algo-

rithm has complexity O(|A|d|O|d). This, coupled with the curse of dimensionality,

which expresses the number of states also grows exponentially with the number of

state variables, makes POMDP planning at scale very challenging. These challenges

underscore the need for more advanced algorithms.

Fortunately, POMCP (Silver and Veness, 2010) can be used to break both curses.

The algorithm employs Monte Carlo sampling to reduce the branching factor dramati-

cally. It is an extension of Monte Carlo tree search (MCTS; Coulom 2007; see Section

2.4.3.1) for MDPs where action-state trajectories are sampled to evaluate optimal ac-

tions. Under the POMCP regime, action-observation trajectories are sampled instead,

reflecting the nature of using observations to infer information on the unobservable

state.

However, in the setting of continuous observation spaces7, POMCP breaks down.

This is due to the inherent difficulty in discretizing an infinite number of possible

observations. In fact, since the probability of generating the same real number twice

5The current belief, bt , refers to the initial belief if the agent is yet to take an action (t = 0), or more
likely, a belief formulated based on the sequence of actions and observations a1,o1, . . . ,at ,ot .

6A history is an action-observation sequence a1,o1, . . . ,at ,ot .
7This is the case for continuous action spaces too, but we omit their inclusion since we use a discrete

action space in our work.
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from a continuous random variable is zero, the width of the tree explodes at the first

observation layer. While many approaches have been explored for handling continuous

observation spaces, we only include here a description of POMCPOW (Sunberg and

Kochenderfer, 2018), an extension of POMCP, since it is the algorithm used to solve

our geophysical data acquisition POMDP.

2.4.3 POMCPOW

2.4.3.1 POMCP

To grasp the mathematics underlying POMCPOW, it is helpful to first understand

POMCP; Monte Carlo tree search method tailored for POMDPs. POMCP is a recursive

algorithm that can solve POMDPs approximately. In the tree, the root node represents

the current belief. Each observation node on has a history h = a1,o1, . . . ,an,on, deter-

mined by its path from the root node. Action nodes store a value Q(h,a), indicating

how promising action a is, and a count N(h,a), which tracks the number of visits to the

node. The algorithm proceeds as follows.

Selection. (5)8 The algorithm selects the action node from the tree that maximizes the

upper confidence bound

UCB(h,a) = Q(h,a)+ c

√
logN(h)
N(h,a)

, (2.1)

where c governs exploration and N(h) = ∑a N(h,a) corresponds to the total count of

visits to the history h. This approach is built on upper confidence trees (UCT; Couëtoux

et al. 2011), which balances exploration and exploitation through the exploration

constant c. The first term encourages exploitation by prioritizing actions with high

action value Q(h,a), while the second term incentivizes the selection of poorly explored

actions with a small number of visits N(h,a).

Expansion. (6) After selecting action a, the agent interacts with the environment. The

agent receives a reward r and observation o, and hidden from the agent, a new state s′ is

generated according to the transition model T (s′ | s,a).

Simulation. (20) The tree search algorithm makes a recursive call and parses node

(h,a,o) as the tree root and s′ as the true state of the environment. The return of this

recursive call, which will likely make many recursive calls itself, is combined with the

8We use (·) to list the corresponding line in POMCPOW (Alg. 1).
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reward r received in the previous step to generate a value R as a measure for the quality

of action a.

Backpropogation. (24) The Q-value estimate Q(h,a) is updated using R, thereby

ensuring the Q-value estimate is a running average. This running average mechanism

makes POMCP an anytime9 algorithm.

While POMCP (and related MCTS methods) limit tree width through Monte Carlo

sampling, the growth of the tree remains exponential with the planning horizon. Addi-

tional heuristics are needed to control tree depth and maintain tractability. Action-value

estimates at the final layer of the tree are often employed. Such knowledge need

not be complete as long as it is able to bias action selection in a favourable fashion.

In well-studied domains like Chess, standard heuristics are available (Browne et al.,

2012); however, in less typical problems, such as geophysical data acquisition, custom

heuristics are needed to achieve desired agent behaviour (see Section 3.3.2).

2.4.3.2 Progressive widening

To overcome the previously introduced explosion in width under continuous observation

spaces, progressive widening (Couëtoux et al., 2011) can be used. Under such a regime,

nodes are created only for a discrete subset of the continuous space. The approach

can be applied to the action or observation layer of the tree, with double progressive

widening corresponding to both simultaneously. As explained in Sec 3.3, our action

space is discrete and we therefore omit an explanation of progressive widening for

actions here.

Progressive widening for observations artificially limits the number of children

|C(h,a)| of node (h,a) depending on the number of visits N(h,a). For hyperparameters

k ≥ 0,α ∈ [0,1], an observation node is created for an observation o if the following is

satisfied

|C(h,a)| ≤ k ·N(h,a)α. (2.2)

For a visual representation of this condition in practice, see Fig. 2.2. If the condition is

not met, the subsequent behaviour depends on the specific tree construction algorithm

used. In our case, POMCPOW disregards the candidate observation oi, and instead uses

an observation sampled from existing child observation nodes using sample weights

9An algorithm that can be stopped at any time during its execution and still provide a valid solution to
the problem at hand.
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based on the number of visits M(h,a,o) (see lines 7-11 in Alg. 1).

a

o1 o2 oi

h

Figure 2.2: A component of a search tree, with history h leading up to the node (h,a). Currently,

C(h,a) = 2 since (h,a) has two children (h,a,o1) and (h,a,o2). The candidate observation oi

is added to the tree at a new node (h,a,o3) if Equation 2.2 is satisfied. By inspecting Equation

2.2, it is clear the width |C(h,a)| of the observation layer grows with the number of visits N(h,a).

This ensures the most promising actions have rich beliefs.

2.4.3.3 POMCPOW: an extension of POMCP

In their survey on Monte Carlo tree search methods, Browne et al. (2012) state “double

progressive widening worked well for toy problems, but less so for complex real-world

problems”. Since then, POMCPOW (Sunberg and Kochenderfer, 2018) has overcome

these challenges by using weighted particle filters at observation nodes to create implicit

beliefs and progressive widening in observation (and action) layers. The algorithm

retains the nonmyopic planning advantages inherent to the POMDP formulation and is

adept at managing continuous observations. These features are particularly beneficial in

our context, as the algorithm enables seamless integration of continuous geophysical

data and considers the plane’s resulting location when selecting the next action. We

include our implementation of the algorithm in Alg. 1 and include an example of a

POMCPOW tree in Fig. D.1.
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Algorithm 1 POMCPOW (Sunberg and Kochenderfer, 2018) with minor adaptions to demon-

strate the implementation we use in our work. Our discrete action set (see Sec. 3.3) omits the

need for action progressive widening, which the original algorithm uses on line 5. Further, at

depth d = 0 on line 3, we return a heuristic value (see Sec. 3.3) instead of the original algorithm’s

return value of 0. A history-action-observation path is denoted (h,a,o). A POMCPOW tree is

visualized in Fig. D.1.

1: procedure SIMULATE(s,h,d)

2: if d = 0 then
3: return H(s) ▷ use heuristic at max depth (Eq. 3.3)

4: end if
5: a← argmaxa∈C(h)Q(h,a)+ c

√
logN(h)
N(h,a) ▷ selction step (Sec. 2.4.3.1)

6: s′,o,r← ENVIRONMENT(s,a) ▷ expansion step (Sec. 2.4.3.1)

7: if |C(h,a)| ≤ k ·N(h,a)α then ▷ observation progressive widening (Eq. 2.2)

8: M(h,a,o)←M(h,a,o)+1

9: else
10: o← select o ∈C(h,a) w.p. M(h,a,o)

∑o′M(h,a,o′)

11: end if
12: append s′ to B(h,a,o)

13: append Z(o | s,a,s′) to W (h,a,o)

14: if o /∈C(h,a) then
15: C(h,a)←C(h,a)∪{o} ▷ add new observation node (Fig. 2.2)

16: total← r+ γROLLOUT(s′,(h,a,o),d−1)

17: else
18: s′← select B(h,a,o)[i] w.p.

W (h,a,o)[i]
∑ j W (h,a,o)[ j]

19: r← R(s,a,s′)

20: total← r+ γSIMULATE(s′,(h,a,o),d−1) ▷ simulation step (Sec. 2.4.3.1)

21: end if
22: N(h)← N(h)+1

23: N(h,a)← N(h,a)+1

24: Q(h,a)← Q(h,a)+ total−Q(h,a)
N(h,a) ▷ backpropogation step (Sec. 2.4.3.1)

25: return total

26: end procedure



Chapter 3

Methodology

3.1 Problem formulation

Our study aims to demonstrate the potential of the POMDP formulation in the context of

geophysical data acquisition. To achieve this, we employ a synthetic case encompassing

all components of a sequential decision-making problem. The advantage of using a

synthetic scenario lies in our ability to fully determine the true state (ground truth). The

synthetic case is created sequentially: a map of a geophysical derivative ms (see Fig. 3.4

(a)) is created using the GeoStats.jl package (Hoffimann, 2018) and then transformed

into a map representing a geophysical signal zs (see Fig. 3.4 (d))1. The signal zs is

considered the noisy counterpart of ms (see Section 3.4). The maps are decoupled

because belief updating (see Section 3.5.2) is only computationally feasible on the

lower-resolution map; the derivative map.

The domain of our simulated case is an area of 2400 m2, discretized into a two-

dimensional grid over 48×48 and 192×192 grid cells for the derivative and geophysical

map, respectively. Each cell has a value in the range (0,1) representing the magnitude

of the geophysical anomaly at that location2. The derivative map is constructed by

generating a signal with random shape, orientation, and magnitude. Finally, the value

v(s) of a synthetic case (state) s, which represents the magnitude of the state’s anomaly,

is determined by

v(s) =
48

∑
i=1

48

∑
j=1

1{ms(xi j)≥ θ}, (3.1)

1We refer to each as the derivative and geophysical map for the remainder of the report.
2All map plots in this report correspond to the colour bar in Fig. C.1.

15
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where 1 is the indicator function, θ = 0.7 is a magnitude threshold, and xi j is grid

element (i, j) on the derivative map.

3.2 Agent dynamics model

We model our agent as a single fixed-wing aircraft and assume consistent altitude and

constant velocity v ms−1. We define the agent dynamics tuple of state st at timestep t to

be the set {xst ,yst ,ψst ,φst}, where continuous (xst ,yst ), continuous ψst , and discrete φst

define the aircraft’s current position, heading, and bank angle, respectively. Given the

tuple {xst−1,yst−1 ,ψst−1,φst−1} at the previous timestep t−1, the agent dynamics tuple

updates are governed by the current bank angle of the plane φst as follows:

ψ̄t =
g tan(φst )

v
ψst = ψst−1 + ψ̄t

xst = xst−1 + vcos(ψst ) yst = yst−1 + vsin(ψst ),

where g is the sea-level gravitational acceleration constant. We use g = 9.80665 ms−1

and v = 40 ms−1. 3 At each timestep, the bank angle of the aircraft φst can changed by

a ∈ {−φCH,0,φCH}. To enforce safe flight conditions, a limit such that |φ| ≤ φMAX is

imposed by restricting choices for a (see Section 3.3). The magnitude of φCH governs

how rapidly the agent can change direction.

3.3 Problem setting

3.3.1 Problem specific formulation

Following the introduction of the general POMDP framework in Section 2.4.1, our

geophysical data acquisition POMDP is defined as follows.

States. The state space comprises the simulated ground truth derivative and geophysical

maps, the previously defined agent dynamics tuple, and observation history. The

simulated ground truth map is consistent for all states s0, . . . ,sT , where T is the timestep

3Most airborne gravity surveys are flown at a ground speed of 60 ms−1 (Dransfield, 2007) but in
preliminary experiments the agent failed to consistently remain on the map at increased velocities. This
is because increasing v limits the agent’s ability to turn sharply (see the inverse relationship between
ψt and v in Section 3.2). A larger planning horizon would allow the agent to plan ahead further when
approaching a boundary and therefore permit larger v.
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Figure 3.1: The outer loop of the POMDP. POMCPOW action selection selects an action at = a

and receives a reward rt = r and observation ot = o generated by the geophysical environment.

However, the true states st−1 = s and st = s′ remain hidden from the agent, as indicated by

the differing arrows. The loop begins at POMCPOW action selection with initial belief b0 and—

following the geophysical environment generating terminal sT = s′ at timestep T —terminates at

the subsequent belief update, which produces the final belief bT .

at termination. The observation history contains all geophysical readings made by the

agent thus far, as well as each reading’s coordinate location.

Actions. The actions accessible to the agent comprise GO, NO-GO, and FLY. Consistent

with the function of geophysical surveys in mineral exploration—which is to quickly

acquire data to guide borehole planning—the GO and NO-GO actions correspond to

initiating a drilling campaign or abandoning the region, respectively. The FLY action is

further subdivided into three options: MAINTAIN the bank angle from the previous

timestep, or choose to INCREASE or DECREASE the bank angle by φCH.

While GO, NO-GO, MAINTAIN, INCREASE, and DECREASE are available to the

agent in general, the action set is constrained at each timestep. Formally, the permitted

action set at timestep t is a function of the current belief bt . When the agent begins

environment interaction, its goal is to gather information. Hence, we do not allow

the agent to select GO or NO-GO until a desired level of confidence is achieved (see

Section 3.6). We also restrict the action set by removing INCREASE or DECREASE if

performing such an action would violate the constraint |φst | ≤ φMAX.

Transition function. The transition model T (s′ | a,s) is a probability distribution over

the next timestep state s′ conditioned on the current state s and action a. In our case,

two of the three components in the state space change: namely, the observation history

and agent dynamics tuple; the synthetic case’s map remains constant. The transition
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model T (s′ | a,s) generates terminal s′ for all states s if a ∈ {GO,NO-GO}.

Reward function. We employ a profitability-based reward function4

R(s,a) =


−cFLY− cOOB ·1{OOBs} if a = FLY,

Profit(s) := αv · v(s)− cGO if a = GO

0 if a = NO-GO,

(3.2)

where the out-of-bounds indicator takes value 1 if one of the agent’s coordinates xs or

ys in state s lay outside the interval [0,2400]; cOOB is a penalty for the agent selecting

paths outside of the mapped region; v(s) is the state anomaly value; αv is a multiplier

that converts the state anomaly value to monetary value5; and cGO is a predefined cost

of GO that embodies both drill campaign costs and potential deposit extraction costs.

The addition of cOOB introduces a minor departure from a purely profit-based reward;

this adjustment can be nullified by setting cOOB = 0.6

The agent’s aim is to maximize the expected sum of discounted rewards through

action selection. Thus, a negative reward at each timestep incentivizes the agent to

strategize a path that facilitates timely termination. Minimizing the number of timesteps

until termination translates to minimizing the distance flown in an airborne geophysical

survey. Further penalization by cOOB for departing the mapped region encourages the

agent to explore only the mapped area.

Observations. We generate one observation per timestep at the agent’s current posi-

tion (xst ,yst ) on the geophysical map. Although generating multiple observations per

timestep might seem beneficial, the marginal gain is minimal since uncertainty near

an existing reading is typically low, and this benefit is outweighed by the increased

computation cost of an additional observation when performing belief updates (see

Section 3.5.2). The process by which the agent observes is visualized in Fig. 3.2 and

the addition of noise is further explained in Section 3.4.

Observation model. The probability Z(o | a,s′)—of observing o when transitioning

to state s′ after taking action a—defines the effect of noise on the data generated by

measurements. We use Z(o | a,s′) = N(o−ms′(Xo);µ,σ), where Xo is the location at

which o was observed, µ = 0.25, and σ = 0.005 is the sill as defined in Section 3.4. This
4In Section 2.4.1, we defined the general POMDP reward function as R : S×A× S→ R, but our

choice or reward R(s,a) rather than R(s,a,s′) gives a function defined by R : S×A→ R.
5We use αv = 1 in our experiments for simplicity.
6We use cOOB = 0 in all experiments because preliminary tests found our heuristic (see Section 3.3.2)

is more effective at encouraging the agent to remain on the map.
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model is used by POMCPOW to generate weights for simulated observations and these

weights are subsequently used during resampling if the progressive widening condition

in Equation 2.2 is not satisfied (see Section 2.4.3.2 and lines 13 & 18 in Alg. 1). The

observation model is further used by the belief updating mechanism (see line 4 in Alg.

2).

Discount factor. We use a discount factor of γ = 0.99 to encourage the agent to plan

with a nonmyopic focus. Choosing a value close to 1, which would place equal weight

between the immediate reward rt and future rewards rt+1,rt+2, . . . ,rT , ensures the agent

considers the impact of an action on its future location and actions available thereafter

during action selection.

3.3.2 Problem specific heuristics

POMCPOW (and other MCTS algorithms) do not permit efficient learning based on the

reward system alone because—in the Simulation step in 2.4.3.1—it is computationally

unfeasible to simulate the POMDP until a terminal state is reached. Instead, simulations

are limited to a maximum depth and once this depth is reached, a heuristic is used to

identify high-quality actions. Our heuristic function is defined on non-terminal states s

as

H(s) =

w≥0 ·1{0 < xs,ys < 2400} ·Profit(s) if Profit(s)≥ 0,

w<0 ·Profit(s) if Profit(s)< 0,
(3.3)

where the indicator function takes value 1 if the agent’s coordinates xs and ys in state s

lay within the mapped region. Similarly to cOOB in Equation 3.2, this manipulates action-

value functions to encourage the agent to remain in the mapped region. Parameters w≥0

and w<0 are used to control how much weight is applied to profitable and unprofitable

cases, respectively. We place significantly more weight on profitable cases by choosing

w≥0 = 0.9 and w<0 = 0.1 This is necessary since equal weighting could lead to NO-GO

being chosen earlier than desired. If the weights were equal, say w≥0 = w<0 = 1,

and a particle filter at a leaf node in the tree contains states {s1, . . . ,sn} such that

∑
n
i=1 Profit(si)≈ 0, then the agent would consider a = NO-GO to be approximately as

promising as a = FLY since Q(h,NO-GO) = 0 for all histories h.7 By placing more

weight on profitable states in the filter, we encourage the agent to choose a = FLY

7When a = NO-GO, Q(h,a) = 0 since R(s,a) = 0 and all states s′ generated by T (s′ | s,a) (line 6 in
Alg. 1) are terminal.
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Figure 3.2: A summary of the agent’s interaction with the environment. The agent selects an

action a and receives a reward r and observation o. However, the true states s and s′ remain

hidden from the agent, as indicated by the differing arrows.

unless there is significant evidence the particle filters at leaf nodes suggest the true state

s has Profit(s)< 0.

3.4 A robust noise mechanism

We impose noise on the derivative ms to generate the geophysical map with signal zs—

from which the agent makes observations—for two key reasons. First, it is crucial that

our synthetic case realistically reflects the inherent noise in real-world geophysical data

acquisition. The noise sources we consider include geological background variation,

regional noise, and sensor noise. Geological background variation accounts for minor

geophysical anomalies caused by subsurface minerals directly beneath the sensor.

Regional noise captures the influence of nearby minerals on geophysical readings, while

sensor noise stems from aircraft motion. The second key reason for incorporating noise

is to prevent particle filter collapse. Insufficient noise can cause the filter to converge

prematurely to a single estimate, resulting in overconfidence and a loss of diversity

within the particle set.

Background variation noise is introduced using a Gaussian process (see App. A)

with a known mean and covariance structure. By setting a positively-valued mean

µGP = 0.25, we assume background noise is present across the entire map, reflecting

the influence of other minerals on geophysical readings at all locations. The noise’s

dependence structure is modelled with a spherical variogram, which is well-suited for

geological data exhibiting gradual spatial changes up to a certain range, beyond which

changes become random and uncorrelated. For an overview of spherical variogram

models and their key parameters—sill s, range r, and nugget n—refer to Appendix B.

In this work, we adopt (s,r,n) = (0.005,30,0.0001), following the values used in the
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borehole data acquisition POMDP implemented by Mern and Caers (2023). While we

acknowledge that more optimal values may exist given the transition from borehole data

in their work to geophysical data in our study, we prioritize addressing more critical

challenges with a greater impact on the project’s overall objectives. The traditional

agent’s near-perfect accuracy in our numerical experiments (see Ch. 4) supports the

validity of this assumption.

A Gaussian filter (Bergholm, 1987) with smoothing parameter σGF = 3 is applied

to generate the geophysical map from the derivative map, effectively computing a

weighted average of nearby grid cells and thereby introducing regional noise. Sensor

noise, caused by aircraft motion, is modelled by adding a noise term ε ∼ N(0,σSN)

to all observations, where σSN = 0.005 is used in all experiments. An additional

consideration is modelling sensor noise as a function of aircraft bank angle, capturing

the improvement in sensor performance when the aircraft is level. We leave this as a

suggestion for future work.

3.5 Belief representation and updating

3.5.1 Belief representation

The belief, which is a probability distribution over states, is an unweighted ensemble

of all particles in a particle filter. Increasing the number of particles in a particle filter

enhances the accuracy and robustness of posterior state estimates while reducing the

risk of premature particle convergence (particle depletion), though at the cost of higher

computational expense during belief updates (see Section 3.5.2). We use N = 1000

particles for our problem which proved sufficient for obtaining accurate estimates for

v(s) during numerical experiments (see Ch. 4). For clarity, we use ms and zs for the

ground truth s; m̄pi and z̄pi to refer to the derivative and geophysical signal of particle

pi; and m̂(b) and ẑ(b) to refer to belief b’s mean estimate for ms and zs. The standard

deviation of estimates m̂(b) and ẑ(b) is captured by σm
b and σ

z
b. See Fig. 3.3 (d) and 3.4

(b) for a visualization of the mean estimate ẑ(b0) for initial belief b0 with N = 3 and

N = 1000 particles, respectively, as well as a visualization of initial uncertainty σ
z
b in

Fig. 3.4 (e) for the N = 1000 case.
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Figure 3.3: The belief mean ẑ(b) (d) is an unweighted average of particles {z̄p1 , z̄p2 , z̄p3} (a-c).

In this visualization, we use N = 3 particles but our experiments use N = 1000 which gives a

uniform prior belief.

As outlined in Section 2.3, particle filters are comprised of a set of candidate states

for the ground truth state. We therefore generate each particle according to the same

process used to produce the ground truth (see Section 3.1). When performing mineral

exploration in the real world, where the generating distribution for the ground truth

is unknown, the particles would instead be estimated by experts using data already

available. At initialization, all particles in the set differ greatly. This is achieved by

generating derivatives m̄pi with significant variations in terms of shape, orientation, and

magnitude. Consequently, an almost uniform initial belief is established in Fig. 3.4 (b),

with a slight concentration of weight towards the centre of the map due to the centring

imposed when generating derivatives m̄pi (i = 1, . . . ,N). Through our belief update

mechanism, which leverages observations made by the agent to infer information on the

true state, our particle set converges to the ground truth (see Fig. 3.4 (c)). The success

of this convergence hinges on the fulfillment of specific conditions, which we review

now.

3.5.2 Belief updating

The outer loop of the POMDP in Fig. 3.1 shows that, between two belief updates, an

action a is selected and observation o is generated. Hence, at each iteration of the belief

update, the prior belief b must be updated to the posterior belief b′ by incorporating a

and o. Firstly, we define b(s) = p(s | b) as the probability of being in state s given the

belief b. Under the general POMDP model formulation, after transitioning to state s′ by

taking action a in state s and receiving observation o, the prior belief b is updated to the

posterior belief b′ as follows8 (Kochenderfer et al., 2022)

8To be explicit regarding timestep t, here s = st−1,a = at ,o = ot ,s′ = st , and b′ = b(s′) = b(st).
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(a) (b) (c)

(d) (e) (f)

Figure 3.4: An example of a derivative map ms (a) and its corresponding geophysical map zs

with the agent’s path visualized (c). The mean (b) and standard deviation (e) of the initial belief

are visualized beside the mean (c) and standard deviation (f) of the final belief at termination.

b′ := p(s′ | b,a,o)

∝ p(o | b,a,s′)p(s′ | b,a) (Bayes’ rule)

= O(o | a,s′)
∫

p(s′ | a,b,s) · p(s | b,a)ds (o⊥ b)

= O(o | a,s′)
∫

T (s′ | a,s)b(s)ds. (s′ ⊥ b) (3.4)

The posterior b′ represents the probability of being in state s′ given the prior belief b,

action a selected by the POMCPOW action selection component, and observation o

generated by the geophysical environment. At the next timestep, the process repeats;

only terminating once the geophysical environment generates a terminal state s′ = sT at

timestep T , at which point, a final belief update is performed to produce the final belief

bT .

However, continuous observation spaces make the update too complex to perform

analytically. Particle filters demonstrate their effectiveness by offering a computationally

feasible approximation of Equation 3.4. The approach works by calculating weights wi

for each particle pi according to the observation received. Using Bayes rule,
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Figure 3.5: An illustration of the perturb functionality in line 13 of Alg. 2. The derivative field

ms (a) is perturbed in terms of shape, orientation, and magnitude (b-d). In this example, noise

magnitude is governed by ω = 1.

wi ∝ f (ot | mpi,o1:t−1)

∝ f
(

ot−mpi(Xot )
∣∣∣{o j−mpi(Xo j)

}
j=1,..., t−1

)
, (3.5)

where ot is the recently made observation; Xo j is the location at which the agent observed

observation o j; and mpi(Xo j) is the value of derivative mpi at location Xo j . The function

f corresponds to a GP model with mean µGP = 0.25 and covariance matrix governed by

the parameters of our spherical variogram model (see Section 3.4) and the observation

locations {Xo1, . . . ,Xot}. Next, the particle set undergoes resampling with replacement,

guided by the sample weights {wi}i=1,...,1000. At this point, careful attention must be

paid to ensure the particle filter remains effective. It is possible for extreme weights

to cause the particle filter to collapse into a limited set of duplicated particles, thereby

negating the benefits of its probabilistic representation of the posterior distribution. We

navigate this threat by making adjustments to each particle in terms of shape, orientation,

and magnitude. We say the particle is perturbed, the magnitude of which is governed

by noise parameter ω (see Fig. 3.5). While it is designed to prevent particle collapse (a

loss in diversity), ω could cause divergence of the particle filter (too much diversity)

if chosen to be too large, and hence, it must be tuned during experiments. The entire

belief update mechanism is described explicitly in Algorithm 2.

3.6 Decision making

The agent’s ultimate aim is to make a GO/NO-GO decision. With reference to Fig 3.1,

if a ∈ {GO, NO-GO}, then the geophysical environment returns a terminal state s′ = sT

and the belief update is performed once more to produce a final belief. However, for
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this to occur, the POMCPOW action selection component must allow the agent to select

such actions by constructing trees like those shown in Fig. 3.6. Initially, the action set

is constrained to flying actions: INCREASE, DECREASE, and MAINTAIN. Only once

a stop criterion—representing an arbitrary level of confidence in belief b about v(s)—is

satisfied, does the POMCPOW action selection component construct a tree like the

examples in Fig 3.6. This confidence is achieved through convergence of the particle

filter. Formally, we extend Equation 3.1 to define the value of a belief b as follows

vb =
48

∑
i=1

48

∑
j=1

1
{

m̂b(xi j)≥ θ

}
, (3.6)

where m̂b(xi j) =
1
N ∑

N
k=1 m̄pk(xi j) is the grid element level average of particle derivatives

m̄pk at grid location xi j (k = 1, . . . ,1000). Then the stop criterion is met if one of the

equations below are satisfied:

UCB = vb +αUσ
m
b ≤ cGO, or LCB = vb−αLσ

m
b ≥ cGO, (3.7)

where αLCB and αUCB are parameters governing the required level of confidence,

and cGO is the previously defined cost of GO. The agent’s decisions are evaluated to

be correct or incorrect depending on Profit(s) = v(s)− cGO, as defined in Equation

3.2. A simulated case is said to be “profitable” if Profit(s) > 0 and “unprofitable”

otherwise. Decisions are classified to be “correct” or “incorrect” depending on the

case’s profitability and final action aT ∈ {GO,NO-GO}, as shown in Tab. 3.1.

aT

GO NO-GO

Profitable Correct Incorrect

Unprofitable Incorrect Correct

Table 3.1: Decision logic based on Profit(s) of simulated case s and final action aT .

3.7 Illustrative examples

This section provides a practical demonstration of the proposed framework using

an illustrative example of sequential exploration in a synthetic environment. The

geophysical map is constructed according to the framework presented in Section 3.1.

The plane enters the mapped region at x = 190 m and y = 0 m heading northeast. The
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b

GO

o1

V = 10 NO-GO

o1

V = 0

(a) A positive action-value for GO will lead to a = GO being selected.

b

GO

o1

V =−35 NO-GO

o1

V = 0

(b) A negative action-value for GO will lead to a = NO-GO being selected.

Figure 3.6: Trees constructed by the POMCPOW action selection component after the stop

criterion is satisfied. Since the geophysical environment returns empty observations for a ∈
{GO,NO-GO}, all state trajectories sampled return the same observation, meaning there is only

a single observation node following each action. The action-values of a = GO and a = NO-GO

are computed according to the reward function (see Sec 3.3). Our heuristic H(s) in Equation 3.3

does not influence action-values since all states in the particle filter at observation nodes are

terminal.

value v(s) of the case is 226 units and cGO is 150 units, meaning Profit(s) = 76. This

means the correct final decision is GO. We use αU = αL = 0.9 for the confidence bound

parameters to provide a stringent stop criterion. All other parameters correspond to the

values used for experiments, as explained in Section 4.1.

3.7.1 Intelligent agent

The discussion in this section is with reference to Fig. 3.7. At t = 0, the random

generation of the particle filter creates a symmetric histogram with mean µ= 157.14 and

standard deviation σ = 64.16.9 According to Equation 3.7, this gives an uninformative

confidence bound with (LCB,UCB) = (99.4,214.9) given our choice of confidence

9We reduce notation of ẑ(b) and σ
z
b to µ and σ, respectively, to align with the titles in the histograms

in Fig. 3.7.
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Algorithm 2 Particle filter update after taking action a and observing o

1: procedure UPDATEBELIEF(b = {pi}N=1000
i=1 ,a,o)

2: Xo← discretized location of o

3: for i ∈ 1, . . . ,N do
4: wi← EVALUATE

(
o− m̄pi(Xo)

)
▷ see Equation 3.5

5: end for
6: w← NORMALIZE(w)

7: b̄← SAMPLE(b,w)

8: for pi ∈ b̄ = {p1, . . . , pN} do
9: if pi is a duplicate particle then

10: m̄p′i
← PERTURB(m̄pi,ω) ▷ see Fig. 3.5

11: end if
12: z̄p′i

← GENERATENOISE(m̄p′i
) ▷ see Sec. 3.4

13: end for
14: p′i←{m̄p′i

, z̄p′i
} (i = 1, . . . ,N)

15: b′←{p′i}N
i=1

16: return b′

17: end procedure

bound parameters αU = αL = 0.9. At t = 20 (row 2 in Fig. 3.7), the red line entering

from the southwest corner shows the path the agent has explored thus far. As a result

of actions and observations a1,o1, . . . ,a20,o20, the agent has performed 20 iterations

of belief updates and has therefore reduced uncertainty in the southwest corner of the

map (shown by the change in colour in the standard deviation map). The extremely

dark line on the standard deviation map has not been manually plotted, the dark shade

corresponds to an extremely low uncertainty, which we expect at locations the agent

has observed directly. The histogram is similar to that at t = 0 since the agent has not

observed strong geophysical anomalies.

However, at t = 25 (row 3 in Fig. 3.7), the agent observes a strong geophysical signal

and the particle filter shifts to have mean µ = 216.07. Uncertainty is still significant

with σ = 78.11. This leads to a confidence bound of (145.8,286.37), which still does

not satisfy the criterion in Equation 3.7. However, after the agent has made another

10 observations at t = 35, the confidence bound becomes (160.7,267.5) and we have

LCB = 160.7 > 150 = cGO thereby fulfilling the stop criterion. A tree is constructed

by the POMCPOW action selection component that corresponds to those shown in
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zs belief mn. belief std. belief dist. 

Figure 3.7: An illustration of the intelligent agent’s behaviour. The geophysical map zs with the

agent’s trajectory represented by the red line (left). The other visualizations show the belief’s

mean and standard deviation, as well as the particle filter’s distribution. The rows are ordered

and correspond to key timesteps t = 0,20,25 and terminal T = 35.

Fig. 3.6 and the agent selects a = GO. As a result, a terminal state is generated by the

geophysical environment component and the algorithm terminates.

3.7.2 Traditional agent

This section refers to Fig. 3.8 throughout. The traditional agent mirrors current

geophysical survey methods by following a grid structure (shown by red lines in Fig.

3.8), flying 10×2400 m survey lines at 300 m intervals (5 east-west and 5 north-south).

At a speed of v = 40ms−1, it takes 600 timesteps to complete the 24 km survey per case.
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The time for manoeuvring between lines is ignored, as it would be negligible in larger

real-world surveys.

The traditional agent terminates with mean µ = 226.8 and σ = 12.3, leading to the

correct decision aT = GO. Comparing the standard deviation maps and histograms in

Figs. 3.7 & 3.8, the traditional agent’s extensive effort results in significantly more

confidence in its conclusion, evidenced by the sharper peak in the histogram and the

darker shade of the standard deviation plot. The final standard deviation of σ= 12.32 for

the traditional agent is far smaller than σ = 50.32 for the intelligent agent. Additionally,

the error of the value estimate µ = 226.81 units is 0.81 units for the traditional case

versus 11.9 for the intelligent agent (given v(s) = 226 units). This boost in confidence

and accuracy is expected, given that the traditional agent explores for an additional 565

timesteps.

3.7.3 Financial comparison

Our hypothesis in Chapter 1 posits that adaptively planning geophysical flight paths with

an information-driven approach could reduce survey distances and costs. The intelligent

agent’s correct decision after just 35 timesteps supports this idea. However, validating

the hypothesis requires testing our approach across a set of cases with variations in

anomaly shape, orientation and magnitude, which we do now.

zs belief mn. belief std. belief dist. 

Figure 3.8: An illustration of the traditional agent’s behaviour. The geophysical map zs with the

agent’s trajectory represented by the red line (left). The other visualizations show the belief’s

mean and standard deviation, as well as the particle filter’s distribution at T = 600.
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Experiments

4.1 Experiment setup

In this study1, a total of 150 synthetic cases are used to evaluate the performance

of our proposed method under varying conditions in terms of shape, magnitude, and

orientation of the geophysical derivative. Each synthetic case is generated as described

in Section 3.1.

The agent’s path is governed by φCH = 18◦ and φMAX = 54◦. The agent dynamics

tuple is initially set to (xs0,ys0,ψs0,φs0) = (190 m,0 m,45◦,0), exactly as shown by the

agent’s starting position in Fig. 3.7. The heading ψs0 = 45◦ corresponds to a northeast

heading. For the particle filter, we use N = 1000 particles and ω = 0.8 for perturbation,

the value for which we determined via grid search.

For decision-making purposes, the parameters αLCB and αUCB are both set to 0.8.

The cost cGO is chosen to be 150 units which, given our data-generating distribution,

provides approximately equal proportions of profitable and unprofitable simulated

cases2. Further, cOOB is set to 0 to maintain a pure profit-based reward, and we instead

rely on the heuristics at leaf nodes to penalize the agent for leaving the mapped region.

Finally, cFLY = 0.01 units.

Unlike the example in Section 3.7.1, which terminated at T = 35, a minimum of 100

readings are required before decision making is possible. This constraint was imposed

as preliminary experiments indicated that the standard deviation of the belief is subject

to volatility in the early stages of interaction with the environment (see Fig. 4.2). Since

1Codes available at https://github.com/ben-j-barlow/geophy-min-ex.
2This is necessary as an agent bias towards GO could artificially improve our results if we had more

profitable cases than unprofitable. Similarly, a NO-GO bias and more unprofitable cases would do the
same.

30
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the aim of this study is to evaluate whether intelligent path planning can accelerate

decision making, we impose an information gathering cut-off in terms of time. A

maximum of 250 timesteps is used by forcing the agent to choose a251 ∈ {GO,NO-GO}
if a decision has not already been made previously.

For the intelligent agent, the POMCPOW action selection component uses 15,000

queries for each decision, with progressive widening parameters k = 2 and α = 0.3

selected via grid search. Both the state-value Q(h,a) and visit count N(h,a) in Alg. 1

are initialized at 0. We use UCT trees with exploration parameter c = 125 for the MCTS

selection step and the output of POMCPOW action selection after tree construction is

decided by selecting argmaxaQ(h,a).

Finally, we enable rigorous evaluation in the borderline cases by separating our

synthetic cases {si}150
i=1 into categories based on anomaly value v(si). This categorisation

is as follows

Categoryi =



Unprofitable (highly) if Profit(si)≤−20,

Unprofitable (borderline) if −20 < Profit(si)≤ 0,

Profitable (borderline) if 0 < Profit(si)≤ 20,

Profitable (highly) if 20 < Profit(si).

4.2 Evaluation metrics

At each timestep t, we evaluate the quality of the current belief’s estimate using the

mean absolute percentage error MAPEt . Further, to evaluate the change in confidence as

the particle filter converges to the true state, we use SDRatiot ; the ratio of the standard

deviation σt at time t over the initial belief’s standard deviation σ0. They are defined as

follows

MAPEt =
1

150

150

∑
i=1

∣∣∣∣∣µ
(t)
i − v(si)

v(si)

∣∣∣∣∣×100, SDRatiot =
1

150

150

∑
i=1

σ
(i)
t

σ
(i)
0

, (4.1)

where µ(t)i represents the anomaly value estimate of trial i at time t; v(si) is the true

anomaly value of the state corresponding to trial i; σ
(i)
t is the standard deviation of

the value estimate for trial i at time t; σ
(i)
0 is the initial standard deviation of the value

estimate for trial i.
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4.3 Results

4.3.1 Traditional agent

In Tab. 4.1, we observe the traditional agent has near-perfect correctness (see correctness

logic in Tab. 3.1) on the profitable (highly) and unprofitable (highly) cases. Out of

the 123 non-borderline cases, the approach yielded a correct GO/NO-GO decision in

122 instances, resulting in a 99.2% accuracy rate. Accuracy decreased to an average

of 77.8% for the borderline cases; however, this is of lesser concern given the smaller

monetary sums at stake. Given that this investigation focuses on the financial benefits

of employing an intelligent agent for survey path planning, it is crucial to assess the

financial performance: the traditional agent achieves a total profit of 5002 out of a

possible 5110, resulting in a 97.9% utilization of available profit.

Go No-go Total Accuracy Available profit Actual profit

Profitable
Highly 67 1 68 98.5% 4967 4917

Borderline 8 3 11 72.7% 143 97

Unprofitable
Borderline 3 13 16 81.3% 0 -12

Highly 0 55 55 100.0% 0 0

95.3% 5110 5002

Table 4.1: The results of 150 synthetic cases with the traditional agent following a grid-based

path. A GO/NO-GO decision is made once the agent has completed their predefined path. The

total accuracy of 95.3% is given by the proportion of correct decisions (143) over the total number

of cases (150). See correctness logic in Tab. 3.1.

We observe the error and standard deviation ratio decrease rapidly during the first

300 timesteps in Figs. 4.1 and 4.2. However, after the traditional agent completes

the north-south flight lines, there is little change in the agent’s belief. This provides

evidence that our suggestion of responding to observations in real-time by terminating

an airborne survey has value, rather than completing an entire survey in full.
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Figure 4.2: The SDRatiot as defined

in Equation 4.1 for the traditional agent.
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4.3.2 Intelligent agent

Figure 4.3 provides an example of the intelligent agent performing as intended. The

agent locates the anomaly in a timely manner and circles it until its uncertainty is

sufficiently reduced to σv = 16.2 at T = 197. This level of confidence is similar to

that consistently achieved by the traditional agent (see Fig. 4.4), but with 16.12 km

less distance flown (403 fewer timesteps). Furthermore, the value estimate of 162.9

produces an error of 0.9 units. The agent attained a mean absolute error of less than 1

unit in 3 additional cases, totalling 4—only 2 fewer than the traditional agent.
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Figure 4.3: An example case where the intelligent agent performs as desired. The geophysical

map with agent’s trajectory (left) shows the agent circling the geophysical anomaly, thereby

encouraging the particle filter’s distribution at t = 0 (centre) to converge to the true value of 162

units at T = 197 (right) before the agent makes a correct decision with aT = GO.

However, the agent did not behave in this manner consistently across all 150 cases,

as evidenced by the average accuracy of 68.7% in Tab. 4.2. The agent utilizes 54.0% of

the available profit, influenced heavily by obtaining negative profit in unprofitable cases

due to incorrect GO decisions.

Go No-go Total Accuracy Available profit Actual profit

Profitable
Highly 44 24 68 64.7% 4967 3449

Borderline 5 6 11 45.5% 143 69

Unprofitable
Borderline 5 11 16 68.8% 0 -28

Highly 12 43 55 78.2% 0 -733

68.7% 5110 2757

Table 4.2: The results of 150 synthetic cases with the intelligent agent adopting an adaptive path

during exploration. The total accuracy of 68.7% is given by the proportion of correct decisions

(103) over the total number of cases (150). See logic in Tab. 3.1.

The large proportion of incorrect decisions in the profitable (highly) and unprofitable

(highly) cases prompt further investigation. In Fig. 4.4, we observe the standard

deviation of the final belief is larger for the intelligent agent. However, minimizing

uncertainty is not the agent’s ultimate aim, it is a tool in the wider decision making

process. Of more urgency than the standard deviation alone is the proportion of incorrect

decisions that this correlates with (the dark shade corresponds to incorrect decisions).

The possible causes for termination are: the stop criterion is met or the agent

reaches the maximum timestep of 250. In Fig. 4.5, we observe the stop criterion
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Figure 4.4: The final be-

lief standard deviation split by

agent and correctness. The

yellow and dark shades cor-

respond to a correct and in-

correct GO/NO-GO decision,

respectively.

and max timestep are the causes for termination in approximately equal proportions.

We visualize the agent’s path in an example of each case in Figs. 4.6 (a) & (c). The

premature termination issue in Fig. 4.6 (c) can be fixed easily by changing values αU

and αL to construct a more restrictive criterion. We make suggestions for the issues

presented by Figs. 4.6 (a) & (b) in Section 5.2.

4.4 Financial analysis

Given the cost of cFLY = 0.01 and v= 40 ms−1, we have the cost per km of survey flying

to be cKM = 0.025. The traditional agent flew for 600 timesteps in all 150 simulated

cases, which totals 3600 km with 24 km per simulated case. The intelligent agent flew

a total of 1114.9 km at an average of 7.4 km (185.8 timesteps) per simulated case.

The financial summary in Tab. 4.3 shows that despite the intelligent agent flying a

significantly smaller distance, its decision making causes a reduction in profit compared

to the traditional agent.

However, it is important to interpret our results in the context of the real world.

Geophysical surveys are conducted with fixed budgets. Assume a fixed budget of

cSURVEY = 270 units to conduct a survey with the goal of achieving maximal regional

coverage and maximizing profit. Each case i has a profit Profit(si) and a cost cFLY×ni,
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where ni is the number of flying actions the agent takes before termination. By sampling

without replacement from our population of 150 cases until the budget is fully expended,

deducting cFLY× ni from the remaining budget with each sample i, we find that the

intelligent agent would produce almost double the profit than the traditional agent in

the real world (see Tab. 4.4).

Traditional agent Intelligent agent

Profit (GO) 5002 2757

Cost (Survey) -900 -278.7

Total profit 4102 2478.3

Table 4.3: A profit analysis of the 150 cases that we performed experiments on.

Traditional agent Intelligent agent

Profit (GO) 1491.8±7.7 2661.1±3.4

Cost (Survey) −270 −270

Total profit 1221.8±7.7 2391.1±3.4

Table 4.4: An analysis of the agent’s expected profit when restricted to a survey budget

of cSURVEY = 270 units. Samples are drawn without replacement from the 150 cases

and the flying cost cFLY×n, where n is the number of flying actions before termination,

is deducted from the remaining budget. Once the budget reaches 0, the sum of the profit

in the sample produces Profit (GO). We used 1000 iterations of this procedure which

enabled standard errors shown in the table.
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(a) The intelligent agent flies in circles around a region that does not correspond to the geophysical

anomaly, eventually being terminated by the time cutoff. This motivates improvements to the

agent’s learning capabilities to encourage a more direct route to the anomaly.

(b) The intelligent agent suffers from its inability to plan beyond 5 timesteps. Our heuristic H(s)

in Equation 3.3 uses an indicator function to encourage the agent to remain in the mapped area.

However, when the agent approaches a map boundary with a heading perpendicular to the

boundary, all possible sequences at , . . . ,at+4 result in the agent leaving the mapped area. Hence,

H(st+4) = 0 for all states st+4 and the agent cannot learn to remain on the map. Whereas, earlier

on in the simulation when the agent approaches the boundary at a reduced angle, there exists

at , . . . ,at+4 such that H(st+4)> 0 and the agent avoids crossing the boundary through planning.

(c) The intelligent agent is on the border of the region containing geophysical anomalies, however,

the stop criterion is not restrictive enough and the agent terminates interaction with the envi-

ronment despite a large standard deviation σT = 62.6. The agent makes the incorrect decision

with belief mean estimate 98 and true value 189 units. This case could be solved by forcing a

threshold maximum value on the standard deviation before termination.

Figure 4.6: A selection of examples where undesired behaviour from the intelligent agent is

observed. Geophysical map with agent trajectory (left), belief mean (centre), and belief standard

deviation (right).
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Conclusions & Discussion

5.1 Conclusion

Given millions of kilometres of airborne geophysical surveys are flown for mineral

exploration (see Section 2.1), even a 1% reduction in flight distances could yield

substantial financial savings. This dissertation tests this hypothesis by comparing a

traditional agent using a grid-based flight path with an adaptive agent that adjusts its

path based on observations in real time. The traditional agent flies 24 km to survey

a 2.4 km2 area, while the adaptive agent is limited to 10 km1—just 41.7% of the

traditional distance—thereby pushing our hypothesis to the extreme. Our results suggest

that intelligently chosen flight paths can produce accurate and confident estimates

of geophysical anomaly magnitude, though further refinement (see Section 5.2) is

necessary to facilitate consistent performance in terms of GO/NO-GO decisions.

Approaches to information gathering problems typically focus on minimizing spatial

uncertainty and rely on preset time limits or uncertainty thresholds for termination. We

instead propose a geophysical data acquisition POMDP that explicitly accounts for the

final drill-or-abandon decision when planning paths for data acquisition; a design choice

that ensures our approach aligns with the real-world objectives of geophysical surveys.

Our path planning solution leverages the benefits of nonmyopic planning, and due

to advances in POMDP-related algorithms, can do so with reasonable computational

effort.

Despite the agent demonstrating it can perform desirably in some cases, the POM-

CPOW action selection component requires attention. Adaptions to the reward function

and search tree construction (discussed in Section 5.2) would enable the agent to per-

1The intelligent agent is limited to a maximum of 10 km per survey but uses 7.432 km on average.

38
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form consistently over variations in anomaly shape, orientation, and magnitude. The

geophysical environment system component is reflective of real-world airborne geo-

physical surveys by implementing continuous flying paths based on an aircraft’s bank

angle and velocity. Observations comprise a derivative signal and embody geophysical

noise stemming from other minerals in the subsurface as well as sensor noise. Finally,

the belief update uses particle filter approximation to seamlessly integrate all previous

actions and observations into the current belief of the world. We successfully balance

particle filter convergence by perturbing anomalies at each timestep with perturbation

magnitude governed by parameter ω.

5.2 Discussion and future work

The agent’s performance in terms of GO/NO-GO decision correctness is dependent on

accurately and confidently quantifying the state anomaly value v(s). Fig. 4.3 shows

the system is capable of obtaining such estimates when a highly informative path is

followed. But, changes are necessary to improve the agent’s consistency in selecting

such a path, as evidenced by Figs. 4.6 (a-c). We visualize the contrast between desirable

and observed behaviour in Figs. 5.1 (b) and (c).

Addressing this issue requires modifying the agent’s learning mechanism. Currently,

the agent learns through profit-based rewards and heuristics. A belief MDP (Kaelbling

et al., 1998) reformulates POMDPs by making the reward R(b,a) a function of belief

b rather than rewards R(s,a) or R(s,a,s′) based on states. This change is powerful

since it permits access to state uncertainty in the reward function. Inspired by the

approach in Cao et al. (2023), who balance exploration of “high-interest areas” (in our

case, geophysical anomalies) with uncertainty reduction for adaptive informative path

planning, we could use an upper confidence bound reward

R(b,a) = µ(xi j)+ cσ(xi j), (5.1)

where µ(xi j) and σ(xi j) respectively represent the current mean estimate v(s) and un-

certainty in that estimate at grid cell xi j; and c is a parameter to balance exploration

and exploitation. This approach aligns the agent’s path selection with the goal of iden-

tifying areas with high mineral prospectivity, rather than merely pursuing uncertainty

reduction, as typical of many information gathering agents. We hypothesize this reward

would incentivize the agent to follow the path shown in Fig. 5.1 (b). Furthermore,
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(a) (b) (c)

Figure 5.1: The agent’s trajectory after 70 timesteps plotted over the geophysical map (a) shows

it is approaching the anomaly. The desired behaviour is for the agent to circle the geophysical

anomaly by taking the path over the area of high uncertainty shown by the dotted red line plotted

over the belief standard deviation (b). Instead, the agent’s path after 90 timesteps (c) shows it

chooses to behave undesirably.

this formulation would permit relaxing our assumption of exactly one significant geo-

physical anomaly per 2400 m2 region; which would further align our approach with

the real world in which significant geophysical anomalies can occur at various spatial

frequencies.

A change in model formulation to a belief MDP necessitates a switch to belief-space

planning (instead of planning over state trajectories). The computationally challenging

nature of belief-space planning, which performs a belief update between each layer

of the tree, limits tractable planning horizons considerably. This sparked the pivot of

popular tree-based algorithms DESPOT (Ye et al., 2016) and POMCPOW (Sunberg and

Kochenderfer, 2018) towards state trajectory based trees, inspired by POMCP (Silver

and Veness, 2010). We suggest employing the recent advancement BetaZero (Moss

et al., 2024); an algorithm that enables online belief-space planning in long-horizon

problems by learning offline neural network approximations of the optimal policy.

Rather than using state uncertainty at a grid cell level as in Equation 5.1, we could

reward for uncertainty reduction in the estimate for v(s). Another reformulation of

POMDPs, namely ρ−POMDPs (Mauricio Araya et al., 2010), are defined such that the

reward ρ is associated with transitioning from belief b to belief b′ after taking action a.

We could implement a reward such that

ρ(b,a,b′) =
σ(b)−σ(b′)

σ(b)
(5.2)

where σ(b) is the uncertainty in belief b’s current estimate for v(s). A candidate

algorithm for solving such a formulation is ρ−POMCP (Thomas et al., 2020); an

extension of POMCP to ρ-POMDPs.
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Appendix A

Gaussian processes

Gaussian processes1 (GPs; Williams and Rasmussen 1995) are probabilistic surrogate

models that represent distributions over functions. Suppose we have a set of input points

X = [x1, . . . ,xn] and their corresponding outputs y = [y1, . . . ,yn]⊤. A Gaussian process

can predict the values ŷ at a new set of input points X∗ as follows:[
ŷ
y

]
∼ N

([
m(X∗)
m(X)

]
,

[
K(X∗,X∗) K(X∗,X)

K(X,X∗) K(X,X)

])
,

where

m(X) =


m(x1)

...

m(xn)

 ,
and the covariance matrix K is given by:

K(X,X′) =


k(x1,x′1) · · · k(x1,x′ j)

... . . . ...

k(xn,x′1) · · · k(xn,x′ j)

 .
To sample from the posterior distribution of a GP, we use the following conditional

distribution:

ŷ | y∼ N (µ∗,σ∗) ,

where the mean µ∗ and variance σ∗ are calculated as:

1We credit Yildiz et al. (2023) for the discussion here.
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µ∗ = m(X∗)+K(X∗,X)K(X,X+Σ)−1(y−m(X)),

σ
∗ = K(X∗,X∗)−K(X∗,X)K(X,X+Σ)−1K(X,X∗).



Appendix B

Spherical variogram

A spherical variogram is a spatial model used to describe the correlation between data

points as a function of their separation distance. The distance h between a pair of points

gives rise to the semivariance γ(h) as follows

γ(h) = (s−n)

[(
3
2

(
h
r

)
+

1
2

(
h
r

)3
)
·1{h≥ r}+1{h > 0}

]
+n ·1{h > 0},

where 1 is the indicator function. The sill s represents the maximum value that the

variogram reaches as the distance between two points increases. The nugget corresponds

to the semivariance when h = 0, often attributed to measurement errors. Finally, the

range r is the distance at which the spatial correlation becomes negligible, meaning the

semivariance γ(h) reaches the sill.

The behaviour of the function is such that for h values less than or equal to the range

r, the semivariance γ(h) increases with distance according to the spherical model, re-

flecting the gradual decrease in spatial correlation. As h approaches r, the semivariance

nears the sill s, indicating that the spatial correlation becomes weaker. For h values

greater than the range r, the semivariance γ(h) remains constant at the sill s, showing

that the spatial correlation between points beyond this distance is negligible, and the

points are effectively uncorrelated.
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Appendix C

Map colour scale

Figure C.1: The colour bar for all map plots in this report.
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Appendix D

POMCPOW Example Tree

Figure D.1: A POMCPOW tree. Image credit: Fig. 5, Yildiz et al. (2023).
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