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Abstract

Model-based clustering has largely focused on mixtures where the component distributions corre-
spond to the multivariate normal distribution. A detailed review of such mixtures, their estimation
through expectation-maximization algorithm and an analysis of their comprehensive implementation
mclust are all given here. Later, a new flexible family of regularized copula-based mixture models are
introduced for cluster analysis, which are considered an extension of mixtures of copulas offered in
recent literature. The technique sees a shrinkage-driven approach to selecting dependence structure
permitted by unconstrained parameterization of the copula parameter using angles. An appropri-
ate procedure for estimation through expectation-conditional-maximization (ECM), framework for
model selection that maximizes cluster separation and in-depth discussion regarding computational
details are all included. The new clustering technique is illustrated by the study of simulated and
real data and is shown to outperform previous proposals. In addition, the report encompasses a
description and documentation of the R package rcbmm, which facilities the new methods and con-
tains the first general ECM implementation available in R. Finally, limitations of the regularized
copula-based mixture model and its implementation are outlined alongside a suggestion for future
research directions.

Keywords Model-based clustering - Cluster analysis - Mixture models - Copula - ECM Algorithm
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1 Introduction

1.1 Limited families of finite mixture models

The goal of cluster analysis is to separate the data into subgroups, where each member of a subgroup
has a common feature which they do not share with members of other subgroups. The application of
finite mixture models to data for the purposes of clustering has been of increasing popularity since the
publication of comprehensive literature [Banfield and Raftery|(1993) and |McLachlan and Peel (2004). The
approach is based on the assumption that RP-valued data samples x; ..., x, are independent, identically
distributed according to the density or probability mass function (pmf)

K
h(xi;ﬂ'aa)zzﬂjfj(wi?aj)v (1)
j=1
where Z]KZI 7; = 1 and m; € (0,1). The parameter vector 8 = (87 ,...,0%)7 contains @, which param-

eterizes the density (or pmf) of the jth mixture component f;(x;,0;) (j =1,...,K). The component
densities (or pmf) f;(x;,8;) often arise from the same parametric distribution family, although this need
not be the case in general. In the majority of literature, the model-based clustering approach sees fitting
a family of mixture models all according to , followed by selecting the most appropriate model from
within this family using some criterion.

For continuous data, a common choice in recent decades for the densities f;(x;,8;) has been the
multivariate normal distribution. Such models are very well established in the literature (for example,
see Banfield and Raftery||1993; |Celeux and Govaert|[1995; [Fraley and Raftery|2002), due in part to the
convenience offered in estimation using the EM algorithm and the easy visualization of fitted components
and mixture densities stemming from the property of closure under marginalization, but also due to the
availability for modelling through the mclust package since its release in 1998 (Fraley and Raftery,
1998a) in the R software (RCorel 2016)).

The challenge imposed by modelling mixture components using the multivariate normal distribution
is the resultant clusters are limited to being elliptical in shape. The Gaussian distribution is often too
restricted to formalize the cluster shapes one is interested in. In order to capture skewness and kurtosis
of a single cluster, several normally distributed mixture components may be necessary, thus leading
to incorrect inference about the number of clusters in the data (Jasraj [2006). Hennig (2010) proposes
merging mixture components and interpreting their union as a single cluster, which can allow for the
fitting of a single non-elliptical cluster whilst avoiding significant overestimation of the number of clusters
in the underlying distribution. However, the merging problem defined by this study is highly subjective
and not statistically identifiable, and hence the intervention of a statistician is necessary due to the
absence of an "optimal" method for merging.

To address such practical issues formally, alternative solutions have aimed at creating more flexible
families of mixture models where the component densities f;(x;;6;) themselves capture skewness and
kurtosis within the data. The additional parameter (the degrees of freedom) introduced by mixtures of
multivariate ¢ distributions (for example, see |McLachlan and Peel 2004; [Lin et al.|2004; |Andrews and
Mecnicholas|[2012)) allows for the regulation of heavy tails of each component, thus enabling mixture com-
ponents to accommodate outliers better than the multivariate normal distribution. Other applications of
finite mixture models have been to the univariate skew-normal (Lin et al., 2007)) and skew-t distribution
(Lin et all [2007), as well as their corresponding multivariate distributions (see, for example, Lin and
Lin| 2010} [Frithwirth-Schnatter and Pyne|[2010; [Lee and Mclachlan||2014). All of the aforementioned
studies overcome the limited shape of multivariate normal mixture components and enable skewness
and kurtosis to be captured in a single cluster, which results in a more trivial relationship between the
number of components in the mixture and the number of clusters found in the data.

Whilst the construction of more parsimonious models than multivariate normal mixtures has been
achieved since the turn of the millennium, all of the approaches outlined force data to obey very strict
marginal properties. In addition, further complications are observed when the gaps between the "true"
clusters are small. |Kosmidis and Karlig| (2016), Exzample 1.1, demonstrates that current methods are
incapable of capturing the true shape of clusters under such conditions. As a result of the limitations
discussed, a new framework that allows a wider range of exotic shapes for mixture components is needed,
without forfeiting any of the flexibility offered by current proposals.



1.2 Flexible families of finite mixture models

The significance of copulas in the modelling of multivariate data follows directly from the flexibility
they offer; prescribed marginal distributions alongside a flexible framework for describing dependence is
available when modelling with copulas. Many families of copulas have been outlined in literature; both
Nelsen| (2007) and [Joe| (1997) provide an extensive analysis.

The application of finite mixture models to copula functions is inviting as the flexibility they offer
when modelling multivariate data has a direct effect on the range of shapes that can be achieved by mix-
ture components, and they allow for the modelling of data with continuous and non-continuous features
in a natural way. The most common copula families in model-based clustering are the Archimedean,
which includes Clayton’s, Frank’s and Gumbel’s copula models, and the Elliptical, which consists of the
Gaussian and t-copula models.

Their importance within clustering has not yet been investigated in great detail, although, |Jajuga
and Paplal (2006]), [Di Lascio and Giannerini (2012)) and [Vrac et al.| (2012)) are some examples of attempts
that have been made. Kosmidis and Karlis| (2016) gives a review encompassing model specifications for
copula-based mixture models for continuous and non-continuous data, efficient procedures for estimation,
and a discussion on topics such as the closure properties of copula-based mixtures under marginalization
and parametric rotations in the sample space for continuous, real-valued data.

This dissertation aims to extend the ideas presented in [Kosmidis and Karlis (2016) for continu-
ous data, by defining a new family of regularized copula-based mixture models (RCBMM) where the
component densities are modelled with the Gaussian copula. Previous examples of the application of
regularization to finite mixture models are Bhattacharya and McNicholas| (2014]) for overcoming the
shortcomings of BIC for model selection in higher dimensions and |[Fraley and Raftery| (2007) for avoiding
singularities during estimation when the component distributions are normally distributed, but an ap-
plication to copula-based mixtures has not yet been made. The structure of the remainder of the report
is as follows.

Section [2] provides a specification for Gaussian mixture models and details for maximum likelihood
estimation through expectation-maximization (EM) algorithm, together with a detailed review of mod-
elling such mixtures via mclust and its approach towards model selection and obtaining initial parame-
ter estimates for EM. A different mixture model specification and details regarding estimation through
expectation-conditional-maximization (ECM) algorithm is presented in Sect. 3| for mixtures based on
copulas. Section [ introduces a method for reparameterizing correlation matrices in order to achieve
unconstrained optimization, which is coupled with the copula-based mixture specification given in Sect.
to define a new family of regularized copula-based mixture models in Sect. A shrinkage-driven
approach towards controlling the model’s dependence structure, details of estimation and an appropriate
framework for model selection are all discussed here. Sect. [6] outlines the challenges of estimation of
regularized copula-based mixtures in terms of obtaining starting values, the approach towards achieving
unconstrained optimization, numerical issues and the availability of parallelization due to component-
wise updates. The application of the methodology to real and simulated data is given in Sect[7] Sections
[8] & [9] respectively specify the implementation of the project’s associated software and review the ap-
proach towards management of the project in terms of methodology, time management, risk mitigation
and the success of tools used. The report concludes in Section [I0] which separately discusses some
limitations of the regularized copula-based model and its software, as well as considering the project’s
contribution to the field of model-based clustering and guidance for further research.



2 Gaussian mixture models

2.1 Model specification

Given multivariate data s = (1, ...,xL

density (or pmf) with K components is

)T, with dim(z;) = p, the likelihood of a mixture model with

n K
L(m,0;2) = [[ > mfi(xi; 6;), (2)

i=1j=1

where 7 = (my,...,7k)? are the mixing proportions and the component density (or pmf) f;(z;;0;) is
parameterized by the parameter vector 8; (5 =1,..., K).

The Gaussian mixture model, which assumes all subgroups within the population are generated from
the normal distribution, has received particular attention in the statistical literature. A detailed analysis
of finite mixture models in general, with an emphasis on Gaussian mixtures, can be found in [Titterington
et al.| (1985)), McLachlan and Basford| (1988) and [McLachlan and Peel| (2004)). In the multivariate case,
the component distributions f;(x;; ;) are parameterized by their mean u; and covariance matrix X; as

0; = (ujT,E?)T and defined as

1 1 1 1
fi(xi;0;) = W \/(sz)exp{ - g(wi—ﬂj)sz (z —Nj)}- (3)

The resultant mixture components are centred at p; with their geometric features, such as shape,
volume and orientation, defined by 3;. The components are ellipsoidal in shape with the density of data
increasing as they approach p;. The standard Gaussian mixture model has p and %p(p —1) independent
parameters for each mixture component’s mean p; and covariance matrix X, respectively, and K — 1
independent parameters for the mixing proportions. This leads to a total of (K —1)+ (K xp)+ %p(pf 1)
parameters for a model comprising K mixture components.

A number of attempts have been made to reduce the number of parameters required for modelling
the covariance matrices X1,...,3Xg. Common examples include modelling 3; = A;I as a spherical
component varying in volume for each index j, or 3; = ¥ where components are not limited to a
spherical shape but limited to sharing their shape with all other components in the mixture (Friedman
and Rubin, [1967)). Banfield and Raftery| (1993), |Celeux and Govaert| (1995)) and |Fraley and Raftery
(2002) parameterize X; with its eigenvalue decomposition

3; =\ D;A; D7, (4)

where )\; is a constant controlling the volume of the mixture component, D; is the orthogonal matrix
of eigenvectors controlling the component’s orientation, and A; is a diagonal matrix, with det(A;) =1,
controlling the shape of the density contours. The imposition of various constraints on the covariance
structure leads to a family of models, and the best model is typically selected via some criterion.

An arbitrarily close modelling of any distribution can be achieved via Gaussian mixture models
by increasing the number of mixture components. However, increasing the number of parameters by
P+ %p(p — 1) with each additional mixture component can quickly lead to a model that overfits to the
data. Hence, finding the optimal number of mixture components K is regarded as one of the most
prominent issues in model-based clustering.

For a fixed K and fixed covariance structure, the parameters of the model can be estimated using
two commonly used maximum likelihood approaches; namely the mixture approach or the classification
approach. The mixture approach, which is used for the remainder of this report, sees the maximization
of over the parameters 7 and 0; a detailed description of which is given by the following introduction
to the EM algorithm. A framework for the classification approach can be found in |Celeux and Govaert
(1995)).

2.2 Estimation using Expectation-Maximization algorithm

The expectation-maximization algorithm (EM algorithm; [Dempster et al.||1977) is a general procedure
for performing maximum likelihood estimation (see Appendix when the observations are viewed as
incomplete data. It retains its name due to the iterative approach adopted between the expectation
step (E-step) and maximization step (M-step), and is a remarkable concept in the field because of the
generality of the associated theory.



As remarked earlier, the EM algorithm sparked interest in the modelling of data via finite mixture
models since its simplicity allows for the estimation of Gaussian mixtures in a straightforward manner.
It aims to find an appropriate root of

0log L(P)
ow

where ¥ = (n7,07)7 are the parameters of the mixture model. The logarithmic function log L(®) is
called the incomplete data log-likelihood of the model and defined as

=0, (5)

n K
I(m,0:2) = > logy mifi(xi;0;). (6)
=1 =1

When performing estimation of the parameters of a Gaussian mixture model, the unlabelled observed
data Tops = (z7,...,21)T are paired with their component-label vectors z = (27,..., 217 to form the
complete data x,. = (mfbs, 2T)T. Hence, z1, ..., 2z, are taken to be realizations of independent, identically
distributed random vectors Z1, ..., Z,, which are indicator vectors corresponding to n random variables
all taking a multinomial distribution of one draw from K categories with probabilities 7y, ..., 7x. Thus,
zi = ((2Y)i,...,(2%);)T, where (27);, which is the ith observation in the jth column of z, is defined as

(7)

( j) 1 if x; is belongs to the jth subgroup in the data,
z . =
’ 0 otherwise.

Since the random vectors z1, ..., 2, are unknown during estimation, in the context of EM z;; € [0,1]
instead represents the soft probability that the observed value x; belongs to the jth component in the

mixture. The complete data pair (wfbs, 2T)T leads to the complete data log-likelihood

n K
le(m,0; 2ops, 2) = Z Zzij{log mj +log fi(x:;6;)}. (8)
i=1 j=1

The "sum-log-sum" nature of @ causes maximization of the incomplete data log-likelihood to be numer-
ically challenging, thus the EM algorithm maximizes the expectation of the complete data log-likelihood
by repeating the E-step and M-step until convergence is achieved. In the expectation step, a soft
assignment is made to compute the posterior probability z;; = (27); of the ith observation belonging to
the jth mixture component using the current estimates of the parameters. In the maximization step,
these probabilities are used in weighted maximum likelihood estimation to update the estimates of the
parameters 7t and @, with the aim of the updates being the maximization of the conditional expec-
tation of the complete data log-likelihood given the conditional probabilities z;; previously calculated
(i=1,...,n,5=1,...,K).

Starting with an initial estimate ®(© = (70T §OT)T of the parameters, at the (I+1)th iteration of
the algorithm, where the current value of the parameters is vl = (w(l)T, B(Z)T)T, the following updates
are performed:

e F-step: Compute the conditional expectation of the complete data log-likelihood [.(¥;x) given
the data x,;s and current estimate of the parameters \If(l), written as

Q(¥; 'I’(l)) = E\II(U{ZC(‘I’; wobS)}V 9)

which is linear in the unobserved data z;; as demonstrated by . Hence, the E-step reduces to
computing the conditional expectation of the unobserved data given the observed data,

E\Il(l) (Z”, wobs) = Zi(jl‘Jrl)
l l
_ ni(s6))
Zi:l Trf(Tll)fm(mi; agrl:)) ,

where f;(x;; 0;”) is as defined in and 9;_1) is used as the current estimate of 8;. The resultant

set of values zi(;H) (i=1,...,n,7=1,...,K) represents the posterior probability of membership



of sample x; to the jth component in the mixture using the current estimates of the parameters
v,

o M-step 1: Set

n (14+1)
(14+1) die1 Zij
s ==
J n
to maximize @D w.r.t the mixing proportions 7y,..., k.

o M-step 2: Maximize

n

K
1+1
ZZ%ﬁ )log fi(x:;0;)

i=1 j=1
w.r.t the parameter vectors 6q,...,0x thereby maximizing @, by performing the updates (for
proof, see appendix
(1+1) (i+1) (1+1) (14+1)
H(l+1) - Dt Zij i 50+ _ Dt Zij (; — K )" (s — 122 )
i +n i (+1) :
Z?:l Zij Z?:1 Zij

The EM algorithm repeats the E-step and M-step until either the absolute or relative increase in the
log-likelihood is less than than a fixed e. The convergence criterion is assessed using the incomplete
data log-likelihood [ (\Il(l); Tops) In dgl), evaluated after each iteration of the algorithm using the current
estimate of the parameters o, Dempster et al.| (1977) demonstrated that the likelihood increases with
each iteration of the algorithm and convergence to a local maximum is guaranteed under fairly mild
conditions, with the value of the maximum depending on the starting values of the parameters v,

2.3 Initialization of the EM algorithm

Despite the EM algorithm’s convenient convergence properties, convergence to a global optimum is not
guaranteed (McLachlan and Krishnan|2007, Sect. 1). Under the condition that the likelihood surface has
multiple maxima, which is usually the case for Gaussian mixture models, the result of EM’s estimation
is heavily dependent on the starting values. In general, there are two sets of methods for achieving good
results using EM for model-based clustering, referred to as stochastic and deterministic.

The former sees the creation of multiple models using a selection of random starting values. The
log-likelihood of all of the associated models is assessed, and the model with maximal log-likelihood is
chosen. The RndEM method of Maitra (2009) uses random starting values drawn from a feasible region
to produce multiple corresponding models. The requirement for a range of models follows from the
obvious intuition that a run of the EM algorithm using one set of starting values generated randomly is
likely to produce poor results. A more rigorous method, emEM of Biernacki et al.| (2003)), uses a short
run of the EM algorithm for multiple sets of starting values, and then proceeds by performing one long
run until convergence is met using the model that achieved the highest log-likelihood during the short
runs. The RndEM method can be interpreted identical to emEM, with the difference being that the
short EM phase stops after the very first parameter estimation. It is clear emFEm is computationally
more expensive, however, this results in RndEM possessing the prominent advantage that it can be
attempted for a larger number of random starting values under the same time constraints.

Deterministic methods for obtaining starting values aim to find a hard partitioning (clustering) of
the data, and the clustering’s associated parameters are used as the starting values for EM. An example
of such methods is the k-means algorithm (MacQueen et al., [1967). Another method with the same goal
as k-means for obtaining an initial partition of the data is hierarchical clustering. Hierarchical methods
can be either agglomerative, where each data point begins as its own cluster and groups are merged at
each step of the algorithm, or divisive, in which one or more groups are split at each stage.

During the application of model-based hierarchical agglomerative clustering (MBHAC) to mixture
models, the merging is performed by recursively joining the two clusters that have the smallest dissim-
ilarity; commonly assessed by maximizing the classification likelihood (see, |Celeux and Govaert| (1995,
Sect. 2.2) which is an alternative to @ in terms of mixture model likelihood functions. Using MBHAC



to obtain starting values does not guarantee that the EM will converge to a global optimum, but it
usually provides reasonable starting points.

In summary, there are an array of methods that all aim to achieve the best results using EM. The
disadvantage of deterministic approaches is the incapability of providing more than one starting point for
EM, while stochastic methods can be computationally more intense. The underlying argument behind
all approaches is a good initialization is crucial since the EM algorithm tends to produce meaningful
results if started from reasonable starting values (Wul, [1983)).

2.4 Model selection

A common challenge in any unsupervised cluster analysis problem is selecting the number of components
K. If a value too small is chosen then the model fails to capture the full clustering complex found in
the data, and a value too large can lead to overfitting. A factor to consider when choosing K is the
complexity of the model. An increase in model complexity can result in a decrease in the number of
components needed to fully capture the clustering formation in the dataset. Hence, the range of shapes
offered by the distribution of each mixture component can have a significant effect on the number of
clusters needed. For example, consider a subset of data generated from an unknown ellipsoidal cluster.
If a Gaussian mixture model with equal-volume spherical components is used to model the data, then
more than one component is needed to model the ellipsoidal cluster.

The flexibility offered by a mixture component, belonging to a Gaussian mixture defined in Sect.
is dependent on the parameterization of the component’s covariance matrix. The component’s volume,
orientation and shape are respectively controlled by A;, A; and D; in , and constraining one or more
to be fixed irrespective of the index j results in the imposition of cross-cluster constraints on the mixture.
For example, fixing A\ = --- = Ag = A causes each cluster to occupy an equal volume in the mixture.
Unconstrained covariance matrices allow a greater flexibility in terms of modelling the observed data,
however, imposing cross-cluster constraints reduces the number of parameters to be estimated thereby
dampening the effects of overfitting to the observed data.

Varying the number of components K alongside imposing various constraints on the covariance
structure sees the creation of a family of Gaussian mixture models. The optimal parameterization
and number of components must be selected using some criterion; [Fraley and Raftery| (1998b) amongst
others select both simultaneously using the Bayesian Information Criterion (BIC; |Schwarz et al.|[1978).
The fit of a mixture model improves as more mixture components are added, thus the log-likelihood @
is strictly increasing as a function of K. As a result, the comparison of the log-likelihood for the purposes
of model selection does not suffice. Instead, as the likelihood increases with the number of components,
BIC penalizes the log-likelihood by adding a penalty term for the number of independent parameters
estimated. The BIC of a model with K components and covariance parameterization denoted by M is
given by

BICk pm = 2l(m, 0;xop5) — vlogn, (10)

where (7, 0; x,p5) is the maximized incomplete data log-likelihood @, v is the number of independent
parameters estimated and n is the number of observations in @,,s. The BIC can be used to compare
models with different numbers of components, or differing covariance parameterizations, or both. The
pair (K, M) that maximizes BICk ys is selected as the optimal model.

2.5 mclust implementation
2.5.1 Introduction to mclust

The populairty of model-based clustering via Gaussian mixtures encouraged the production of the com-
prehensive R package mclust (Scrucca et all 2016), and the straightforward mechanism it offers for
estimating such mixtures in turn caused the prevalence of Gaussian mixture models to continue to rise.
The package allows for automated and efficient estimation of Gaussian mixtures for a variety of purposes.

The implementation provides a system for model-based clustering, classification and density esti-
mation based on Gaussian mixtures. It also supports functions for performing single E- and M-steps
and methods for visualizing fitted models with clustering, classification and density estimation results
all provided. For multivariate data, a variety of covariance structures are achieved through eigenvalue
decomposition in ; cross-cluster constraints are imposed on mixture components’ volume, shape and



orientation by constraining A;, A; and D, respectively, to be equal or variable across groups. For uni-
variate data, the available models are simply E for equal variance and V for variable variance, however,
univariate data is not relevant here.

2.5.2 Initialization

Before performing EM for model estimation, mclust uses MBHAC to obtain an initial partitioning of the
data which allows for starting values to be found for EM. Given observed data xops = (27 ,...,21)7T, the
algorithm performs n — 1 steps in which it merges two clusters, which results in one cluster containing
n data points having started from n clusters all containing one data point. Since mclust assumes the
mixture components take multivariate normal distribution, the parameters of f;(x;,0;) are

0; = (u]T, ZJT)T (j=1,...,K). When the covariance X, is allowed to vary across clusters, the criterion

to be minimized at each hierarchical stage is

K
w
Wk = Zn]— log

23
nj

; (11)

Jj=1

where W ; and n; are the sample cross-product matrix for the jth group and number of observations in
the jth group (j = 1,..., K), respectively. This approach is equivalent to maximizing the classification
likelihood of the model as introduced in Sect. 2.3}

A drawback of hierarchical methods is the computational effort required is proportional to the square
of the number of observations, which is especially challenging for large datasets. However, mclust’s
MBHAC implementation has the advantage of being independent of the number of mixture components.
This is computationally convenient in practice, since a single run of MBHAC can be stored and used to
supply the starting values for a whole family of models fitted using EM.

Another shortcoming of MBHAC is the difficulties it encounters in the presence of coarse data, which
is generated from the rounding of continuous data when measured or from data with a discrete nature. In
such cases, multiple merging decisions on a given iteration of the MBHAC algorithm result in obtaining
the same value in . Hence, the ordering of variables and permutation of observations can have a
significant effect on the initial partitioning formed using MBHAC. An application in|Scrucca et al.| (2016)
achieved BIC values —2810.777 and —2821.339 using a Flea beetles dataset available in the R package
tourr (Wickham et al., [2011)), using an equal number of mixture components and the same covariance
parameterization in both models. The difference in BIC, which is considered significant since it is greater
than 10 (Kass and Raftery} [1995)), was provoked by simply reordering the variables.

Scrucca and Raftery| (2015) overcame this issue by projecting the data through a suitable transforma-
tion, with the aim of enhancing separation amongst groups, prior to identifying an initial partitioning.
This removes the dependence on the ordering of the variables, and the results of the paper suggest an
improved model fitting process and more accurate clustering results. The transformations are integrated
into the MBHAC function hc() offered by mclust, and the transformation of choice is specified by
using the function mclust.options(). The details of the transformations proposed in the paper are
summarised here.

Let &,ps be the n x p centred matrix corresponding to the observed data @x.,s and
3= {sij} = &1, Eops/n be the p x p sample covariance matrix. The singular value decomposition of
Lops 1S

r
Zops =UDVT = Nuv!, (12)
i=1
where Ay > --- > A, > 0 are the singular values, u; the right singular vectors and wv; the left singular

vectors of the centred data matrix. The rank r < min{n, p} is the rank of &,s. The transformations of
interest are now introduced.

e Data sphering (SPH): An elliptically shaped symmetric group of data points is transformed to a
spherically shaped collection of points by applying

Zspy =2 VD 'Wn=Uvn,

where V is the matrix of eigenvectors and D~ '/n = diag(y/n/);) the diagonal matrix of square
root inverse of eigenvalues from the spectral decomposition of the sample marginal covariance X.



The features are uncorrelated with unit variances and centred at zero, since E(Zgpy) = 0 and the
variance-covariance matrix of Zgppy is the identity matrix I,.

e PCA scores for covariance matriz (PCS): This transformation is obtained as

ZPCS = iobsv = UD»

where the features are again centred at zero since E(Z pcg) = 0 and uncorrelated since Var(Z pos) =
D?/n = diag(A? /n. In contrast to the previous transformation, the variances are now decreasing
and equal to the eigenvalues of 3.

An extension of the singular value decomposition can be used to allow for two more transformations.
Define S = diag(s?, ..., sz) as the diagonal matrix of sample variances, then the centred and scaled data
matrix i:obsS_l/2 can be decomposed as

r
i:obss_l/Q _ U*D*V*T _ § :)\;ku;kv:#T7
=1

e PCA scores from correlation matriz (PCR): The princiapl component transformation of the corre-
lation matrix is given by

Zpor = ZasS~ V2V = U D",

where E(Z pcr) = 0 and Var(Z pcr) = D*?/n = diag(\;?/n). Hence, the features are centred at
zero, and uncorrelated with variances equal to the eigenvalues of the marginal sample correlation
matrix 571/2201,5571/2.

e Scaled SVD projection (SVD): The scaled SVD projection is defined as

ZSVD = jobs‘s’_l/Q‘/ﬂkDﬂ< = U*D*1/27

where E(Zgyp) =0 and Var(Zsyp) = D*/n = diag(Af/n). In this case, the variances are equal
to the square root of the eigenvalues of the marginal sample correlation matrix S12% 8712,
Again, the features are centred at zero and uncorrelated.

MBHAC commonly finds sub-optimal partitions resulting in the subsequent EM procedure converging to
a local maximum. Applying the transformations aims to enhance the separation between groups to assist
MBHAC in providing reasonable starting values to EM, thereby alleviating some of the risk of achieving
a sub-optimal fit in the subsequent model. There is no evidence to suggest one transformation performs
better than another, hence, it is advised that all are used for a given initialization task and the most
appropriate starting values are selected by assessing the corresponding likelihood of the model achieved
by each transformation. The transformations defined are not considered the work of this dissertation,
but the work of [Scrucca and Raftery| (2015)).

2.5.3 Model Selection

The model selection framework in mclust uses BIC by default. For multivariate data, mclust’s ability
to fit mixtures with K € {1,...,9} components and 14 possible characterizations for the within-group
covariance matrix results in a total of 140 models that can be constructed. When construing a family of
models by the function call Mclust (), the model space can be restricted by specifying the arguments G
and modelNames, representing the number of components and covariance parameterization, respectively.
For instance, parsing G= (2,3) and modelNames= ("VVV""VV E") produces a family of 4 models; one
for each permutation of the two parameters. The model of interest in this report is "VVV" which stands
for "variable volume, variable shape, variable orientation", characterizing a particular parameterization
of a multivariate normal component distribution’s variance-covariance matrix.



2.6 Limitations of GMMs and mclust

Despite the efficiency of the EM implementation, convenient initialization procedure and flexibility in
covariance parameterizations offered by mclust, the package fundamentally suffers from a number of
limitations following from the components taking a Gaussian distribution.

Firstly, clusters are limited to occupying an elliptical shape which is inappropriate in the common
case that the underlying clustering complex of subgroups in the observed data is not elliptical. Moreover,
Gaussian mixtures force the observed data to obey very strict marginal properties, namely each feature
is assumed to be normally distributed, which is unrealistic in a number of applications and also prevents
the modelling of mixed- or bounded-domain data in a natural way. Whilst a transformation can be
applied to such data to allow for the modelling using normal mixtures, the results of [Dean and Nugent
(2013) suggests better results are obtained when working with observed data directly. Copulas instead
offer a framework that allows one to work directly with bounded-domain data. Moreover, the flexible
choice of marginal distributions results in clusters that occupy an exotic range of shapes.

3 Copula-based mixture models

3.1 Model specification

It must be stated, the concept of using copulas to define families of mixture models is not new (see,
for example, Arakelian and Karlis|[2014; |Kosmidis and Karlis| [2016|), however, the methodology has
received significantly less attention in the literature than Gaussian mixtures. A copula C(u1, ..., up; )
is a multivariate cumulative distribution function with uniform marginals, often regulated by a singular
parameter ¥ which aims to describe the dependence structure of the distribution. A statistical modelling
problem of multivariate data using copulas can be decomposed into two steps: identify the marginal
distributions of the data and link these marginals by selecting an appropriate copula function. Sklar’s
theorem (see, Nelsen|[2007, Sect. 2.3) shows that every multivariate distribution can be written via a
copula representation.

In the context of model-based clustering, copula functions and a selection of marginal distributions
can be used to capture the distribution of the mixture components in a model defined by . The
component densities (or pmf for non-continuous data) f; correspond to the distribution function

Fj(:l:i’ej) :Cj(Gl(mﬂ?’le)v'"’Gp(wip;vjp%":bj)v (G=1,....K) (13)

where G1, ..., Gy, which respectively have associated parameters 74, ...,7;, for the jth mixture com-
ponent, are univariate marginal cumulative distribution functions, and C; is the distribution function
of the copula. The separation of the statistical modelling problem into marginal properties and depen-
dence properties is reflected formally, by the decoupling of a mixture component’s parameters 8; into
marginal parameters ~; = ('ijl, o ,'ijp)T and copula parameter 1, as 6; = ('y;fr, 't/)JT)T. It is assumed
that the density c;(xz;;0;) = 0P{C;(x;,0;)}/0x1 ... 0z, exists, thus the density of the jth component
for continuous marginals is defined as

P
fi(@i,0,) = ¢;(Gr(min;¥j1)s - - Gp@ipi V)i ¥5) [ [ 92 (insv;0) (14)

t=1
where, omitting the component index, g:(zi;v;) = 0Gt(xit;y,)/Oxit. The case where Gy,...,Gp are

discrete distribution functions is not discussed here.

In comparison to a Gaussian mixture where each component takes a multivariate normal distribution,
each component in a copula-based model can arise from a different parametric distribution family by
varying the choice of copula C;. This creates a mechanism for constructing diverse families of models,
with flexibility enhanced further by the dividing of the multivariate distribution into two components,
namely marginal distributions and the copula function. Moreover, an immediate consequence of Sklar’s
theorem is copula-based mixture models match the flexibility offered by families of mixture models
described in the literature. Hence, a powerful framework is defined that encompasses all known mixture
models and has the ability to capture a range of cluster shapes that other methods cannot, thereby
overcoming the limited elliptical cluster shapes found in Gaussian mixture models.



3.2 Estimation using Expectation-Conditional-Maximization algorithm
3.2.1 Expectation-Conditional-Maximization algorithm: general case

Despite the intuitive interpretation and numerical stability of the EM algorithm, there are cases in
which other algorithms are preferred. |Little and Rubinl (1987 present a variety of applications in which
complete data maximum likelihood estimation is complicated. In such cases, one can aim to increase the
objective function @ in @ during the M-step instead of maximizing it. This intuition leads to a class
of algorithms referred to as GEM algorithms, however, in general they require further specification on
the increasing @ function to guarantee convergence. The ECM algorithm of Meng and Rubin| (1993) is
a subclass of GEM that, under the right conditions, conveniently shares all the convergence properties
of the EM algorithm.

Suppose a general vector @ = (01, ...,0gs), partitioned into S subvectors, parameterizing a function
to maximize (). The ECM algorithm separates the EM algorithm’s second maximization step into S
computationally simpler conditional-maximization (CM) steps, where the sth step aims to maximize Q
over @ with some function, gs(6), of the parameters constrained (s = 1,...,5). The resulting algorithm
is computationally less intense due to the simplicity of conditional complete data maximum likelihood
estimation. For a more detailed review of the general ECM algorithm accompanied by motivating
examples see Meng and Rubin| (1993]).

3.2.2 Expectation-Conditional-Maximization algorithm: copula-based mixture models

A direct consequence of the decoupling of 8; (j = 1,..., K) into the marginal parameters and copula
parameter is the maximization of Zle{zyzl zi;log f;(x:;0;)} becomes complicated and the traditional
EM algorithm no longer suffices. The ECM algorithm is hence used for estimation of copula-based
mixtures, such that the maximization in the EM algorithm’s complicated M-step 2 is separated into
two CM-steps. The aim of the two CM-steps is to first maximize the conditional expectation of the
complete data log-likelihood with respect to the marginal parameters given the current value of the
copula parameters, and then maximize with respect to the copula parameters given the updated value
of the marginal parameters.

Thus, starting with ¥(©) = (z(OT 9(OT)T at the (I + 1)th iteration of the ECM the following steps
are performed.

e E-step: Same as EM, such that the densities f;(x;, ;) correspond to instead of taking mul-
tivariate normal distribution .

e M-step 1: Same as EM.

e (CM-step 1: Maximize the conditional expectation of the complete data log-likelihood in over
constrained @ = (07 ,...,0%)T, with the function g1(8) = (¥ ,...,9%)7T fixed, by maximizing

n K P
l l
Z Z Z,(jﬂ) { log ¢j(G1(wir; ’le)a o Gpl(@ips ’Yjp)i 1!’; )) + Zlog 9t (@it; ’th)}

i=1 j=1 i=1

: I+1 I+1 I+1 I+1
w.r.t'yn,...,’yjp,...,’yKl,...,’prtoobtamupdatedvaluesvﬁl ),...,'ygp ),...,'ygﬂ )7~-~77(Kp)

for the marginal parameters.

e CM-step 2: Maximize the conditional expectation of the complete data log-likelihood in over
constrained 8 = (87 ,...,0%)7, with the function g»(8) = (v7;,... Yipr Vi Viep) fixed,
by maximizing

n K

+1 +1 +1
S A  log s (Grlwas v i), Golwinia Sy i) )
i=1 j=1

(141) (141
1

w.r.t ¥,...,1, to obtain updated values 1 S ) for the copula parameters.

The main difference between EM and ECM is explained by considering the objective function to maximize
Q in @, which represents the expectation of the complete data log-likelihood . The aim of EM’s
M-step 2 on the (I + 1)th iteration of the algorithm is to maximize Q(¥; ") over 8 in ¥ = (z7,67)7.
A single CM-step instead maximizes @ over 8 with some function of 8, ¢,(0), fixed at the value of it’s
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most recent estimate computed by ECM. Therefore, each CM-step is said to increase () rather than
maximize it.

3.3 Gaussian copula

The copula of interest in this dissertation is the Gaussian copula (proposed by |Li|2000)) from the Elliptical
family. The Gaussian copula is flexible since the copula parameter ) is a p X p unstructured correlation
matrix taking values in [—1, 1], thereby allowing for equal degrees of positive and negative dependence.
The distribution function is given by

Cug,. .., up, ) = <I>p(¢>'1{u1}, e, <I>'1{up}; ), (15)

where ®71{.} is the inverse distribution function of a standard univariate normal distribution, and
®,(...) is the distribution function of a standard p-variate normal distribution. Assuming the density
c(u, ... up;tp) = P{C(u1,...,up;¥P)}/0us ... Ou, exists, it follows

c(u17 et 7up;¢) = ¢P(¢)_1{u1}7 MR (I)_l{up}; '(/")7

where ¢,(...) is the density function of a standard p-variate normal distribution.
Since the copula parameter of the Gaussian copula is a p x p correlation matrix, 1, has the general
form

1 P12 . plp
17[) = P12 1 . 5
: : Pp—1,p
Pip . Pp—1,p 1

where p;; € [—1,1] represents the correlation between the ¢ and jth variable (i,j =1,...,p,i < j).

4 Reparameterization of the copula parameter

4.1 Motivation for reparameterizing the copula parameter

Similarly to constraining elements of the eigenvalue decomposition of a mixture component’s covariance
matrix in a Gaussian mixture model, a shrinkage method can be applied to a copula-based mixture
component’s copula parameter to achieve a range of parameterizations for the dependence structure of
the model.

Example 1 Suppose a copula-based mizture model with K = 3 components, capturing a clustering
pattern in observed data Tops = X1, ..., Ty, with dim(x;) =2 (i =1,...,n). Two marginal distribution
functions Gy and G2 are required and the Gaussian copula is chosen as the copula function of each mizture
component. Hence, the component density f;(x;,0;), which corresponds to with C; corresponding
to the the Gaussian copula’s distribution function , is parameterized by the parameter vector
0;, = ('ij, ¢jT)T, where the elements on the minor diagonal of the 2 x 2 correlation matriz v take value

Py € [_L]—];
¥, = (plj pf) (j=1.2.3).

To fit the model, one can apply ECM and instead mazximize a penalized form of the log-likelihood (@
defined as

I'(m,0;x) = 23: {(zn:logﬂjfj(wi; Hj)) + /\p?} (16)

j=1

where A > 0 is a parameter controlling the magnitude of an Lo penalty applied to p; (j =1,2,3).

The introduction of regularization on p; encourages the parameter to approach 0, which in turn
causes P ; (G =1,...,K) to approach the identity matriz which is referred to as zero correlation for the
remainder of this report. By varying the value of A, it is possible to achieve a whole range of dependence
structures for the mizture components.
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However, maximizing during an iteration of ECM via constrained optimization of the copula pa-
rameter on the interval [-1,1] is computationally unattractive. A method of reparameterizing each 1, to
allow for unconstrained optimization is necessary.

4.2 An unconstrained parameterization of the copula parameter

Consider a p x p correlation matrix R = (R;;) with each element constrained on [—1,1] (4,5 = 1,...,p).
A flexible representation of R is achieved by exchanging it with a (p — 1) x (p — 1) matrix of angles
© = (6,;), parameterized by %p(p — 1) angles in the range (0,7]. The replacement of R with © is

performed by first exchanging R with its upper-triangular Cholesky factor X, such that R = X' X,
followed by exchanging X with angles using the following identities.

j—1 i—1
Xu=1, Xj;;=[][sinbk;1. Xi=cosbij[]sinbs;-1r (i,5=1,....pi<j) (17)
k=1 k=1

By re-expressing sin 0;; and cos §;; as s;; and c;;, respectively, the Cholesky factor X is expressed as

1 C11 C12 . Cl,p—1
S11 C22812 ... C2,p—151,p—1
522512 C3,p—152,p—151,p—1
X = : (18)

p—2
¢p—1,p—1 [ 1=y Smp—1
p—1
m=1Sm,p—1

The matrix of hyperspherical coordinates (18) has the following convenient properties. Firstly, the
requirement (6,;) € (0, ] ensures (i) X7 X is always non-negative definite, and (ii) the Cholesky factor X
is unique. Secondly, the trigonometric expression ensures (X7 X);; € [-1,1] (4,5 = 1,...,p), with
all elements on the major diagonal (i = j) equal to 1. Hence, (X7 X) always satisfies the requirements
of a correlation matrix.
If (x'),...,(xP) represent the columns of X, then (z2), (z?),..., (x?) imply a collection of

1,2,...,p—1 angles. Define a (p — 1) x (p — 1) upper triangular matrix @ = (6; ;), such that the angles
corresponding to the jth column of © correspond to the (j + 1)th column of X, formally

arccos(X; jy1) i=1,5=1,...,p—1)

0;; = (19)

arccos (Xi7j+1/]_[2__11 Sin(arccos(Xk,jH))) (1=2,...,p—1,7=2,...,p—1,i < j).

The definition of ® = (6;;) in is obtained by performing elementary algebra on the identities (17]).

It is clear a one-to-one relationship exists between the correlation matrix R and matrix of angles ©.
Given a p X p unstructured correlation matrix R, its Cholesky factor X always exists which allows the
construction of a (p — 1) x (p — 1) matrix of angles ® = (6;;) via (19). Conversely, a matrix of angles ©
defines a given X, which produces a correlation matrix R = X? X. The uniqueness of the mapping in
both directions arises from constraining the angles 6;; € (0, 7].

Reflecting on the motivation for the reparameterization outlined in Section the angles 0;; as
parameters are unconstrained on (0, 7|, and further transformation can facilitate unconstrained param-
eterization on the whole real line.

For the benefit of the remainder of the report, define fo : [~1,1]pxp) — (0,7](p—1)x(p—1) as the
function that exchanges a p x p unstructured correlation matrix R with a (p — 1) x (p — 1) upper-
triangular matrix of angles ®, and fél it’s inverse which always exists. In addition, define ®} as the

s

d x d upper-triangular matrix of angles with all non-zero entries equal to 7,

e; = 2 (20)
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The significance of this matrix is explained by the following example.

Example 2 Consider the correlation matric R = I3, where I3 is the 3 x 3 identity matriz. It is
observed that the upper-triangular Cholesky factor X of R is
1 00
X = 1 0
1
and the matriz of angles produced using (@ 18

o-(F I)-e:

It is clear that a 3 x 3 correlation matriz R with major diagonal entries all 1 and all other elements
taking value 0 is achieved if and only if 0;; = /2 (1 <i < j <p—1). More generally, if R=1, (p>2)

then fe(R) defines the unique (p — 1) x (p — 1) upper-triangular matriz of angles @, _,.

INIEINTE

5 Regularized copula-based mixture models

The goal is to define a new method for fitting a regularized copula-based mixture model of K components
to n samples of p-dimensional data z.ps = (x1,..., 2L)T, using maximum likelihood estimation for the
marginal parameters of each component and a flexible parameterization of the copula parameter of
the mixture components to allow shrinkage driven methods to control the dependence structure of the

mixture.

5.1 Model specification

The model is specified as a mixture of Gaussian copula model with K components, each corresponding
to the distribution function with C; chosen as the Gaussian copula’s distribution function defined
. Hence, the cumulative ditribution function of the jth component (j = 1,...,K) is

Fj(zi,0;) = @p(@_l{Gl(ziﬁ ’Yﬂ)}a ces (I)_l{Gp(xim 'Yjp)}§ ¢j)a
where ®~1(.) is the inverse distribution function of a standard univariate normal distribution and ®,(...)
is the distribution function of a standard p-variate normal distribution with correlation matrix ;. The
jth component distribution’s parameter vector 8; is partitioned into the marginal parameters and copula
parameter as 0; = (’)']T7 1,[1]-T)T.

The marginal parameters of the jth component ~,; = ('7jT1, e ,’YJTK)T parameterize the univariate
marginal cumulative distribution functions G, ..., G)p, which are arbitrarily chosen allowing the conve-
nient construction of mixture models that can handle any type of continuous data. The copula parameters
YPq,..., Y are p X p unstructured correlation matrices taking values in [—1, 1], that are re-expressed as
angles during estimation using the method described in Sect.

The mixture model takes density as defined in , where 7 = (71, ...,7K)
tions, and component density f;(x;,0;) (j =1,...,K) is expressed as

T are the mixing propor-

gt(fﬂit;’th)
UG (wi;v50)})

fi(i;0;) = ¢p(@_l{Gl($il§7j1)}a S (I)_I{Gp(xipé’Yjp)}; ";bg) X H o1 ( (21)

where ¢,(...) is the density function of a standard p-variate normal distribution with correlation matrix
¥, and gi(zit;v,) = OG(wit;vy)/Owit is the density function for the tth marginal (j = 1,..., K,t =
1,...,p). The specification of the model is concluded by re-expressing the density as

K
hlai; . 6) = Zﬂj{%@_l{Gl (i)} - O HGp(@ipi v,) 5 ;)
- gt(xitf)’jt)
. £[1 d1 (NG (wit;v50)}) } (22)
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The number of independent parameters in the model is now considered. Omitting the component
index j, if Ay =|,| represents the number of parameters required for the tth marginal distribution, then
>-7_, Ay marginal parameters are required for the marginal parameters of the jth component. Since
each copula parameter %; (j = 1,..., K) represents a p x p unstructured correlation matrix, %p(p -1
parameters are required to model the dependence structure of each component distribution. Finally,
(K — 1) parameters are required for the mixing proportions. Hence, the total number of parameters to
be estimated is

¢=(K—-1)+ KxZAt + (K x p(—l)). (23)

5.2 A shrinkage-driven approach to selecting dependence structure

The specification so far does not define a new statistical framework for model-based clustering. In fact,
Kosmidis and Karlis| (2016) applied an identical mixture of Gaussian copula model for varying K to a
real-world dataset, and even extended the model defined in Sect. to allow 1, exchangeable as well
as unstructured (j = 1,..., K). To introduce a new flexible mechanism for model-based clustering, a
regularization term is appended to the log-likelihood of the model to encourage the copula parameter
1 to approach zero correlation (j =1,...,K), thereby affecting the dependence structure of the model.
The approach can be considered an unconstrained generalization of the methodology outlined in Example
The incomplete data log-likelihood becomes

l(ﬂ@:nobs—(z:long]f]m“ )—A(Z{Z(w_gf}), AeRsy  (24)

j=1 we@j

where the first parenthesis is the incomplete data log-likelihood @ of an unregularized mixture model,
and the second parenthesis forms an Lo penalty whose magnitude is controlled by a tuning hyperpa-
rameter A > 0, and ©; = f@(z,bj) is the matrix of angles corresponding to the jth component’s copula
parameter as introduced in Section E As Example |2 I explains, if the (p — 1) x (p — 1) upper-triangular
matrix © is such that all non-zero elements are equal to 7, then its corresponding correlation matrix is
the identity matrix I,. Hence, the Lo penalty encourages d) s associated matrix of angles to approach
@E‘p_l) in , which in turn causes 1, to approach zero correlation. By varying the value of A, an infi-
nite amount of dependence structures can be achieved by the mixture. This provides a new mechanism
for model-based clustering, where the dependence structure is controlled by a hyperparameter .
It follows the corresponding complete data log-likelihood is

n K K
IL(7,0; Tops, 2) = (Zz,zij{logwj + log fj(@:; Oj)}> — A(Z{ Z (w— 2)2}>7

i=1 j=1 j=1  weo,

which, for convenience, can be re-expressed by performing elementary algebra as

K n
L b5 2) = 3 {{ D sllonm +log feao )} -2 S @-D2f @)
j=1 i=1 wEB;
5.3 Estimation using Expectation-Conditional-Maximization algorithm

Fix K € {2,...,9} amd A > 0. The parameter vector ¥ of the model is defined as ¥ = (x7,07,...,0%)7,
where the jth mixture component’s parameter vector 8; = ('yJTl, e ,’yjrp, @b;‘r)T (j=1,...,K). Starting

with an initial estimate () for W, at the (I 4+ 1)th iteration of the algorithm the following steps are
performed.

e E-step: Compute the posterior probability of membership z;; of sample x; to the jth component

O] .o
L T fi(@ii ;) (26)
ij K (1) Dy’
Z =17Tm fm(mlvegn))
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o M-step 1: Set

n (1+1)
(141) Dict Zij
T ==
J n

o CM-step 1 (M-step 2): For each component, j = 1,..., K, maximize

n

Zzij{ log ¢p (PG (zin;vj1)} - O H{Gp(mipi ;) 5 ;)

=1

gt Izt,’)’Jt)
" Zl"g TG a7 0

w.r.t to 7 ,...,7,, to obtain updated values ’y( +1), . ,')/;;H) for the marginal parameters (j =

1,...,K).

o CM-step 2 (M-step 2): For each component, j =1,..., K, maximize

{ Z,Zij IOg ¢p(q)_1{G1(xi1;7j1)}v ceey @_1{Gp($ip;7jp)};¢j)} - A Z (UJ — g)z, (28)

i=1 wEB;

w.r.t to t; to obtain an updated value ¢§l+1) of the copula parameter (j = 1,...,K), where
= fe(1;) is the (p — 1) x (p — 1) matrix of angles associated with ;.

The expression to maximize varies in each of CM-1 and CM-2, however, they still aim to maximize
the conditional expectation of the same penalized complete data likelihood function . The second
summation term in CM-1 is omitted from CM-2 since it is independent of the copula parameter. Similarly,
the Lo penalization term is independent of the marginal parameters and thus not required in CM-1.

The algorithm implemented iterates between the E-step and M-step (M-step 1, CM-step 1 & CM-step
2) until a termination criterion is satisfied. That is, either a pre-defined maximum number of iterations
is reached, or in most cases, the relative difference of the incomplete data penalized log-likelihood
in two successive iterations is less than 1076,

5.4 Model selection

Given the observed data, the model selection process aims to automatically select the number of compo-
nents and adaptively select the best correlation structure for the component distributions using shrinkage
methods. This problem reduces to fitting a whole family of mixture models, and selecting the most ap-
propriate using some criterion. The procedure is considered equivalent to mclust’s model selection
implementation, where instead of finding optimal eigenvalue decomposition of the component distribu-
tions’ covariance matrices, an optimal value of the tuning parameter is determined.

Suppose K = (Ki,...,K.), such that K, € {2,...,9} (s =1,...,¢e), and A = (A1,...,Ay) with
0= A1 <--- < Ay. The model selection procedure adopts a grid search methodology, where a RCBMM
with density is fitted for each pair (K, A) € K x X creating a family of e x f models.

For fixed K € K, the most appropriate correlation structure is determined by finding the value of
A € A that corresponds to the model maximizing the mean silhouette width of the observations. The
silhouette value associated with an observation is a measure of how similar the data point is to its own
cluster compared to other clusters. For a more detailed explanation, see Appendix [C} As a result, the
mean of the silhouette widths over the entire dataset is a metric describing how appropriately the data
is clustered, and choosing the model that maximizes the value of the mean is equivalent to selecting
the model that maximizes the separation between the clusters. Hence, the model selection procedure
identifies, for each K, € K, the value of A that maximizes cluster separation.

This results in a list of pairs (K1, A}),..., (K., A¥), such that AX € XA (s = 1,...,€e) represents the
optimal correlation structure for a given number of mixture components. The final step in the process
is to select the pair that optimizes the number of the components in the mixture, which is performed
using BIC. The model selection algorithm is therefore:
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1. Fors=1,...,e:

(a) Consider the models defined by the pairs (K, A1),..., (K, Af) and select A\i € A as the
turning parameter corresponding to the model that achieves the larget average silhouette
width.

(b) Compute BICkary = (2 x loglikk ar)) — (g x logn) for the model defined by the pair
(K, M) = (K, X;), loglikg ary is the unpenalized log-likelihood @ of the model, and ¢
and n are the number of independent parameters in the model and observations in the data,
respectively.

2. Select the pair (K*,\*) € {(K1,A}),..., (K¢, Af)} that maximizes BIC g+ x+).

6 Computational aspects

6.1 Initialization

The initialization procedure adopts a semi-stochastic semi-deterministic approach by identifying multiple
initial partitions of the data and assessing which set of corresponding parameter estimates should be used
as starting values for ECM. The parameter estimates corresponding to each partitioning are obtained
by applying the deterministic method offered by Kosmidis and Karlis (2016), Section 3.2, which is an
application of the IFM method (Joe|[1997, Section 10). The strategy used also makes use of the prac-
ticality offered by mclust in enhancing separation amongst groups prior to identifying the partitioning,
which aims to ensure reasonable starting values are identified. The strategy for finding starting values
corresponding to a given transformation T, where T corresponds to SPH, PCS, PCR or SVD in Sect.
is as follows for the case that no shrinkage is applied to the model (A = 0).

1. Retrieve (if already computed for a previous value of K) or determine the results of MBHAC via
hc(), such that the separation amongst the data is enhanced prior to performing MBHAC using
transformation T.

2. Identify an initial classification vector by parsing the results of MBHAC and K to hclass(),
which is another function offered by mclust. This partitions the observation indices {1,...,n}
into K mutually exclusive subsets S, ..., Sk, such that Uszlsj ={1,...,n} and |Sj| = Nj is the
cardinality of the jth subset.

. .. . 0 .
3. Set the starting values for the mixing proportions 7 as 7r§ ) = Ni/n(j=1,...,K).

4. Set the starting value 'y;g) of the jth component’s tth marginal parameter vector by using maximum
likelihood to fit the marginal ¢; on data z; fori € S; andt=1,...,p (j =1,..., K).

5. Set the starting value ¢§0) of the jth component’s copula parameter by using maximum likelihood

to fit the copula Cj(u1,...,u,;1;) on observations u;; = Gt(mit;'ygg)) forieS;jandt=1,...,p
(j=1,...,K).

6. Compute the corresponding likelihood of the model where the Lo penalty is insignificant since
A=0.

This provides four sets of starting values corresponding to the different transformations applied before
performing MBHAC. The starting values associated with the model achieving maximal likelihood are
chosen as the starting values for ECM.

For the case A > 0, the problem of identifying starting values for the parameter estimates is straight-
forward. The implementation ensures that given a grid of lambda values A = (A1,...,Af), where
0= A1 < --- < Ay without loss of generality, the family of mixture models is fitted sequentially: first on
the pair (K, A;) through to (K, Af). As X is increased, the previous solution w* and 6 is parsed as a
"warm start" to ECM for the new value of A\. This approach is intuitive since the parameter estimates
that achieve convergence for a previous value of A are considered the best possible starting values for
new ), since the model corresponding to previous A is very close the new model in the model space if
the interval between the values of \ is not large.
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The solution is efficient as it makes use of the convenient MBHAC procedure available in mclust,
which allows for the identification of a hierarchical clustering that is independent of the number of
mixture components. It removes the requirement for performing MBHAC for each value of K when
fitting a family of models, which is especially practical in the scenario that the number of observations n
or dimension p is large. The transformations are used in an attempt to achieve convergence to a global
maximum using ECM, although this may not always be the case.

The resulting procedure is a combination of stochastic emECM (a previously undefined procedure
considered the extension of emEM to ECM) and the deterministic approach used in Kosmidis and Karlis
(2016). As Biernacki et al.| (2003) describes, there doesn’t exist an initialisation strategy that works
uniformly well in all cases, however, by defining a procedure that takes advantage of the benefits of both
stochastic and deterministic methods, one would hope the initialization procedure would perform well.
The performance of the initialization method is not investigated in great detail here since the primary
focus of this report is the definition of regularized copula-based mixture models, but is suggested as a
topic of interest in future research.

6.2 Conditional-maximization steps

The separable form of the penalized complete data log-likelihood is convenient, since it allows the
decomposition of the maximization task into K independent maximizations of weighted likelihoods,

0§l+1) = argmax{{ zn:zij{logwj + logfj(wi;ej)}} - A Z (w— 2)2}, G=1,...,K) (29)

03 i=1 wed,

where the update from 6 is achieved by

O _ (a1 OTNT +1) _ (DT (D) T\T
j ('7] ad’j ) to ej - (Py] awj )
I+1
e CM-step 1: updating from Hg-l) = (7§Z)T,¢§l)T)T to 0§ 7) (7§l+1)T, '(/J;l)T)T by maximizing
w.r.t the marginal parameters v; = ('ijl, . ,'y]Tp)T, followed by,

1+1
o CM-step 2: updating from 0§ 7) = (7§Z+I)T,¢51)T)T to 0§-l+1) = ('yyﬂ)T,@b;lH)T)

ing w.r.t the copula parameter ;.

T by maximiz-

Thus, the pair CM-1 and CM-2 can be maximized independently across the mixture components to allow
for parallel optimization, which reduces computation time significantly in multi-core systems.

6.3 Transformation of parameters

Both of the conditional-maximization steps require numerical methods to optimize some objective func-
tion. Unconstrained optimization is achieved by performing a suitable transformation to the parameters
prior to optimization, and performing an inverse transformation to the results before updating the pa-
rameters of the model.

When performing CM-1, the transformations used are the identity, logarithmic and exponential func-
tions. Prior to optimization, the current estimate of a mixture component’s marginal parameter vector
'yg-l) = (’y§-l1)T, e ,'VE-QT)T is transformed to ’yil]) = (’ygj)lT, e ,'7ilj)pT)T defined on the whole real line.
Expressing this swap formally is hard to follow so the intuition is described instead. All scalar parameters
within the marginal parameter vector that are defined on (0, 00) (for example, o and 8 parameterizing
a Beta(a, 8) marginal distribution) are exchanged with their corresponding logarithmic value. Scalar
parameters defined on the whole real line (for example, u parameterizing a N (u,0?) marginal) are ex-
changed with their corresponding identity mapping since they are already considered unconstrained. The
component’s transformed marginal parameter vector 'yil]) is parsed to the optimization function which

outputs an updated value 'yilfl) for the transformed marginal parameters. The inverse transformations

are then applied to the output to ensure the marginal distributions are well-defined. This results in the
updated parameter vector 'yyH)T
of the component distribution.
When performing CM-2, accommodating for unconstrained optimization is more challenging since
the copula parameter 1; takes the form of a p x p correlation matrix constrained on [-1,1]. The problem

is simplified by using the reparameterization approach discussed in Sect The current value of the

which is used by CM-2 to update the implied dependence structure
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copula parameter is exchanged with an upper-triangular p x p matrix of angles @;D = (0;5) = fe (1/}5-[))
unconstrained on (0,7]. Finally, unconstrained optimization on the whole real line is managed by
creating a temporary matrix @ilj) = (0.sj), such that 0,;; = tan((#;; + 7)/2), which is parsed to the

optimizer to obtain the updated value of the transformed copula parameter @gfl). Similarly to CM-1,

the output is transformed back by its inverse function to attain an updated parameter @;ZH). Finally,

the upper-triangular matrix of angles is transformed to a correlation matrix by performing the update
(+1) _ r—1 @(H‘l)

Yy =fe (©577).

J

6.4 Numerical issues

When performing the conditional-maximization steps of ECM, it is possible to encounter numerical issues
that result in likelihood values taking unbounded negative values.

Suppose an observation x; is extremely unlikely to belong to the jth cluster, then the density f(x;,6;)
takes value close to 0. Hence, log f(x;,0;) and the summations and can take unbounded
negative values. This can produce unstable results during optimization, resulting in the inability to
determine a solution to the optimization problem at hand. To overcome this issue, observations with a
small probability of belonging to the jth cluster, precisely z;; < 10716, are omitted from the summations
and .

Moreover, evaluating the density ¢,(...) in and results in a likelihood value equal to 0,
which causes log ¢,(...) to take unbounded values, if u;; = G¢(zit;v;,) € {0,1} for any ¢ = 1,...,p. This
problem is alleviated by setting

~ {0.999, u;; > 0.999
* 7 10.001, uy < 0.001

prior to computing the density ¢,(...). This modification ensures the stability of the optimization pro-
cedures that perform the conditional-maximization steps of ECM.

Finally, a threshold is applied to Beta marginal distributions to avoid unbounded likelihood values
resulting from clusters containing a single observation or clusters containing multiple observations with
equal value. The variance for a Beta marginal distribution of a mixture component is forced to be greater
than 107°.

7 Application

7.1 Simulated data

The foregoing theory is illustrated by the analysis of a simulated dataset. Since the shrinkage methods
(see Sect. adopted during model fitting encourage the copula parameter parameterizing the compo-
nent distributions to approach zero correlation, one would expect the geometric features of the clusters
to change as A is increased. It is well known that the k-means algorithm is a special case of Gaussian
mixture models with all component distributions parameterized by covariance matrix 3 = I,,, where p is
the dimension of the data, resulting in K equal-volume spherical clusters. The intuitive correspondence
between the identity covariance matrix and identity correlation matrix implies components in a mixture
of regularized Gaussian-copula will occupy a more spherical region of the sample space as A is increased
and the copula parameter approaches zero correlation.

This hypothesis is investigated by generating data from K = 2 distinct clusters, with dimension p = 2
for the purposes of visualization. The mixing proportions 71 and 75 are equal to 2/3 and 1/3, respectively,
and the data is produced for n = 20, 50, 150, 375, 2000 observations. The marginal distributions G; and
G respectively take Normal(u,o?) and Beta(a, 3) distribution. Hence, the parameters of the jth
component in the mixture are v, = (5,05, aj, B;)T for the marginal distributions and ;= p; for the
copula parameter. A model taking density is estimated, for each simulated dataset corresponding
to n = 20, 50, 150, 375, 2000, via ECM with tuning parameter A = 0,100,200 and K = 2 constrained to
the true number of clusters in the data.

The contours in Fig. demonstrate clusters become more spherical as A increases, as expected.
Moreover, the clusters’ orientation becomes bias towards the coordinate axis as A increases as a conse-
quence of the copula parameter approaching zero correlation. The effect on parameter estimates and
classification error of this changing shape and orientation is investigated.
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as a measure of the relative error associated with the estimate of the marginal and copula parame-
ters, respectively, where v} and p} represent the true value of their associated parameters for the jth
component.

Table 1| demonstrates a relationship between RMSE(v) and RMSE (1). The RMSE (1) is listed first
for each A, as it is considered the primary dependent variable of the study due to the application of the
shrinkage directly on v, and 1p,. As expected, RMSE (1)) increases as the magnitude of shrinkage is in-
creased and 1, and 1, approach zero correlation. More interestingly, the secondary dependent variable
RMSE () also increases with RMSE () and A. The report so far discusses the ability when using a
copula function to model multivariate data to first select the marginal properties and then capture the
distribution’s implied dependence with the copula. This suggests that the value of a component distri-
bution’s copula parameter 1p; depends on its marginal parameters 7,;,...,7;,, however, the contrary
is not considered. The proposition introduced by Table [1| that increasing A can increase the error in the
estimate of the marginal parameters is explained by analysing the likelihood function maximized
by CM-1. The updated values of the marginal parameters are dependent on the copula function Cj
parameterized by 1, which means applying shrinkage to the copula parameter in CM-2 during the /th
iteration of ECM affects the estimate of the marginal parameters in the (I + 1)th iteration.

A more in-depth analysis of Table [I] finds the number of observations affects the error in parameter
estimates. For A = 200, RMSE (1) is equal to 0.9999 and 0.1565 respectively for n = 20 and n = 2000.
The effect of n on the errors is explained by considering the model’s penalized log-likelihood . The Lo
penalty in the second parenthesis is independent of n, therefore, increasing n results in the non-penalized
likelihood given by the first parenthesis dominating the likelihood value. Considering the results, it is
concluded the number of observations in the sample data should be considered when constructing a grid
of X\ values. If the number of observations in the data is large, a grid of larger A values is suggested,
and vice versa. A suggestion for future research is to investigate this relationship further, and identify a
method of constructing a reasonable tuning grid prior to constructing the family of models.

It can be expected that an increasing error in the estimates of the parameters and changing cluster
shapes has an effect on the classification implied by the mixture model. The maximum of the posterior
probabilities of membership z;1, ..., z;x at the last iteration of the ECM algorithm (see E-step in Sect.
is used to determine the cluster membership of each observation. Figure [1| shows the classification
error is affected by the changing dependence structure caused by increasing .

This simulated example is included primarily to demonstrate the effect of shrinkage methods on
resulting cluster shapes. An increasing value of the tuning parameter A will consistently encourage
the mixture’s clusters to become more spherical and bias their orientation towards the coordinate axis.
However, the large increase in misclassification error in Fig. [I]is not associated with an increasing value
of A, rather with the values of A used. The shrinkage applied to the model’s dependence structure is
considered extreme due to the large values of A\ with respect to the number of observations n = 375.

When the same dataset (n = 375) is modelled with K = 2 components using a new family of
regularized copula-based mixture models constructed using a more appropriate grid of lambda values
A=0,1,...,50, the model selection procedure (see Sect determines that A = 17 produces the best
correlation structure of the component distributions. The corresponding model results in a misclassifica-
tion error of only 17.6%, which is less than the error produced in the scenario that no shrinkage is applied
to the model, as shown by the case A = 0 in Fig|l} Hence, it is concluded the RCBMM outperforms a
non-regularized mixture of copula in terms of clustering performance in this example.

Fitting a Gaussian mixture model using mclust, with K = 2 restricted to the true number of clusters,
to the simulated dataset (n = 375), yields a BIC value of —1447.8. This model is also constrained to
a "VVV" parameterization of the component distribution’s covariance matrix, allowing for comparison
to the optimal RCBMM (K, \) = (2,17) whose components are also free to vary in volume, shape and
orientation across groups. Interestingly, the model produced by mclust results in a misclassification error
of 18.7% meaning the RCBMM outperforms mclust in terms of clustering performance and BIC, since
it achieves a BIC value —1063.7, which is not a guaranteed phenomenon in model-based clustering. The
classification table of each model can be viewed in Tab. 2] In summary, in this example the RCBMM
outperforms a non-regularized copula-based mixture and Gaussian mixture model in terms of clustering
performance and BIC.
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lam=0 lam =100 lam = 200

Misclassification = 17.9% Misclassification = 20.0% Misclassification = 23.0%

Figure 1: The contours of the mixture components corresponding to the models
(K, ) =(2,0),(2,100), (2,200) for the simulated dataset with n = 375.

X =0 X = 100 X — 200
n | RMSE() RMSE(y) RMSE(y) RMSE(y) RMSE(yp) RMSE(y)
20 0.0920 0.5449 0.9999 26.3010 0.9999 26.3011
50 0.0401 0.3395 0.9110 0.7247 0.9538 0.7397
150 |  0.0050 0.1051 0.8155 1.7114 0.8973 1.8893
375 | 0.0200 0.0844 0.4672 0.4332 0.7021 0.4778
2000 | 0.0120 0.0385 0.0556 0.1398 0.1565 0.3459

Table 1: Error in parameter estimates corresponding to the models (K, \) = (2,0), (2,100), (2,200) for
the simulated dataset with varying numbers of observations n.

The investigation thus far is in a supervised setting, where the number of components in the mixture is
known. In the unsupervised setting K = 2,...,9, a family of RCBMMSs with a tuning grid A =0,1,...,50
and a Gaussian mixture produced by mclust with parameterization "VVV" is constructed, to investigate
the ability of both approaches to select the optimal number of mixture components. The RCBMM made
correct inference regarding the number of components while mclust yielded 4 mixture components. It is
concluded that for the simulated data example the RCBMM outperforms mclust in terms of clustering
performance, BIC and making correct inference regarding number of clusters.

7.2 Real data

The exposition of the methodology is applied to a real dataset by extending the analysis of Kosmidis and
Karlis| (2016|) on a sport-related dataset from Hoopdata. com, which is a website that provides an extensive
database for NBA statistics. The data contains statistics on 493 NBA players that played more than
24 minutes (the equivalent of half a game) in the 2011-2012 season. The paper’s investigation saw the
grouping of players in terms of their performance by fitting a family of Gaussian copula-based mixtures
with copula parameters represented as exchangeable and unstructured correlation matrices. With the
introduction of regularization, this analysis extends the ideology by creating a family of mixtures ranging
from an unstructured dependence structure (when A = 0) to near exchangeable (since a matrix with zero
correlation can also be described as exchangeable) as A becomes large, and a range of intermediate fits
by increasing A gradually.

The data contains 6 performance-related variables in (0, 1), each representing a percentage attribute,
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0.2

0.0

-0.2

0.4

mclust classification rebmm classification

True cluster 1 2 True cluster 1 2
1 197 67 1 194 60
2 3 108 2 6 115

Table 2: Classification tables for the Gaussian mixture model with "VVV" parameterization fitted via
Mclust () and optimal RCBMM given by A = 17 when applied to the simulated data with n = 375
observations. The number of components K = 2 is restricted in both examples.

— K=2 K=3 Ks4 --- K=5 --- K= K=7 K=t — K=9

Figure 2: For K =2,...,9, the mean silhouette width of model fitted to the NBA data according to
density varies depending on the magnitude of shrinkage controlled by A. The maximum silhouette
width, which corresponds to optimal correlation structure, is indicated for each value of K.

and a final variable representing the total points scored with all values positive. Appropriate marginals
are the Beta and Gamma distribution for representing the percentage attributes and points scored,
respectively. For a detailed description of the data see |Kosmidis and Karlis| (2016), Ezample 4.2.

For K € K = {2,...,9} and A € A = {0,0.1,0.25,0.5,1,2,3,5,7.5,10,...,30,35,40,50, ...,100},
density is fitted to the data by applying ECM to maximize the penalized likelihood . This
results in |A| = 32 different parameterizations of the copula parameters for each K € K, thereby
constructing a family of 256 models. Restrictions are applied to constrain the variance of each Beta
marginal to be greater than 10~° to avoid unbounded likelihood values (see, Sect. [6.4)).

For a fixed K, the model with optimal correlation structure is found by picking A € A that maximizes
the average silhouette width of the observations. In the case that adjacent values of A in the tuning
grid result in an equal mean silhouette width, which occurs when both models predict an identical
classification of the observations, the smallest such value of A is chosen. Fig[2] shows the mean silhouette
values for increasing A, and highlights the chosen value of A for each K.

After finding the best correlation structure for each number of mixture components, the model
selection problem is reduced to finding the optimal value of K using BIC. Table [3] outlines that K = 4
provides the largest value of BIC, indicating the optimal model from the family of mixtures fitted to the
NBA data is given by (K*,\*) = (4,12.5).

To visualize the effect of the shrinkage-driven method on the copula parameters, the %p(p —1)=21
values in [-1,1] parameterizing a mixture component’s copula parameter are plotted against A. Fig
demonstrates the elements of each v, approach 0 as the magnitude of shrinkage increases for the case
K = 4, and the dashed vertical line located at A = 12.5 highlights the optimal correlation structure
identified previously. For the case of the first component in the mixture, the same data can be observed
in matrix form in Fig[4] for A = 0 (unstructured) and A = 100 (maximal shrinkage applied). The results
are as expected since the magnitude of Lo regularization applied to each 1, in becomes larger as A
increases, thereby encouraging the %p(p — 1) parameters of each matrix to approach 0.

Further investigation into the effect of the shrinkage on the copula parameters is performed by
investigating the determinant of the correlation matrix parameterizing a particular mixture component
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K | Optimal A q  Log-lik BIC q Log-lik BIC q  Log-lik BIC
Shrinkage-driven correlation Exchangeable correlation Unstructured correlation

210 71 3521.49 6602.75 31 3146.45 6100.68 71 3491.12 6542.00

310 107 4007.53 7351.61 47 373431 7177.2 107 3990.00 7316.55

4 1125 143  4142.58 7398.49 (***) 63 3900.49 7410.35 143  4119.54 7352.41(*)

5 1275 179  4157.81 7205.73 79  4002.73 7515.62 179  4218.24  7326.59

6 |0 215  4261.15 7189.20 95  4053.61 7518.17(**) 215 4267.97 7202.83

7 1125 251 4332.84 7109.35 111 4073.36  7458.46 251 4270.47 6984.61

8 |3 287 4348.23 6916.91 127 4146.57  7505.68 287 4365.99 6952.43

9 |90 323 4337.50 6672.24 143 4159.01 7431.35 323 438743 6772.1

Table 3: Maximum likelihood fits of the density on the NBA dataset with best shrinkage-driven
correlation structure for K = 2,...,9 (left) and exchangeable and unstructured correlation structure
presented by Kosmidis and Karlis| (2016) (right). A (*) denotes the best BIC for each correlation
specification, (**) denotes the best BIC found by [Kosmidis and Karlis (2016) and (***) denotes the
best BIC found by the shrinkage-driven investigation. Log-lik represents the non-penalized likelihood
@ in all cases. Optimal A is understood by analysing Fig.

as A increases. Since the copula parameters approach zero correlation, the determinant of the correlation
matrix should approach det(I,) = 1. Figshows the result is as expected with the exception of 1 mixture
component in the case K = 9 where the shrinkage is not yet apparent.

The results of the investigation can be compared to those of [Kosmidis and Karlis| (2016]) by analysing
Tab. The case such that the optimal shrinkage-driven correlation structure is given by the model
experiencing no shrinkage (K = 2,3,6), the BIC value can be compared directly to the value achieved
by the model with unstructured correlation. A stochastic approach to determining starting values and
a more stringent criterion for assessing convergence causes the unstructured BIC results in [Kosmidis
and Karlig (2016) to be similar but not equal to the results of this investigation. Interestingly, the
introduction of shrinkage methods to maximize separation between clusters results in different inference
regarding the optimal number of mixture components K. However, the result that optimal K = 4 in this
study is also achieved for unstructured correlation in Kosmidis and Karlis| (2016), and hence the BIC
values of these results are discussed. The variance of maximum likelihood parameter estimates caused by
varying magnitudes of shrinkage, as demonstrated in Section causes the unpenalized log-likelihood
of any regularized copula-based mixture to decrease in value as A increases. Hence, the greater BIC
value 7398.49 for optimal shrinkage-driven model in this investigation compared with value 7352.41 for
K = 4 with no shrinkage arises from the differing starting values rather than the shrinkage-method.
However, this result does not imply the semi-deterministic semi-stochastic initialization approach used
here is more successful than the random approach adopted by |Kosmidis and Karlis| (2016), as the model
defined by (K, \)=(6,0) achieved a lower BIC than the unstructured results of the previous study. This
is evidence of the previous discussion that there is no "optimal" approach to identifying starting values
prior to performing EM or ECM (see Sect. [2.3)).

To conclude the investigation, the bivariate marginals of the best model (K, A) = (4,12.5) are studied.
It was remarked earlier that the desirable closure under marginalization property for Gaussian mixture
models, which ensures that the marginal of any dimension of the component distributions arises from
the same family of distribution as the full component distribution itself, contributed to the popularity of
modelling component distributions according to the multivariate normal distribution. [Fang et al.| (2002)
demonstrates this property is satisfied for the Gaussian copula, and hence, the contours of the bivariate
marginals of optimal model (K, \) = (4,12.5) are shown by Fig. []

8 Software: rcbmm

This chapter aims to describe the implementation that facilities the newly defined model and methods
discussed in Sect. 5] & [l It includes a description of how various readily available tools aided develop-
ment, a flowchart to explain the relationship between components within the system and a comprehensive
documentation of each function associated with the implementation. A description of the methodology
adopted towards software development is omitted as it is included in Sect. The software is available
at https://github.com/ben- j-barlow/rcbmm.
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Figure 3: Differing correlation structure arising from an increasing magnitude of shrinkage for model
with density and K = 4 mixture components. A dashed vertical line is located at A = 12.5
indicating the optimal correlation structure of the model.
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Figure 4: Value of copula parameter 1, of mixture component with index 1 for the case K = 4 in the
setting no shrinkage is applied (left) and shrinkage is applied with A = 100 (right).

8.1 Discussion of tools and frameworks used

The intuitive choice for implementation was R or Python since they are state-of-the-art in terms of
programming language oriented towards data science. The choice of R was logical, due to the project
leader’s familiarity with the programming language amongst other immediate benefits.

The prominent advantage offered by R is the comprehensive integrated development environment
(IDE) RStudio (RStudio Team) 2019). The IDE offers smart indentation, integrated R help and docu-
mentation, integrated capabilities for visualizing plots, and extensive package development tools which
aided the production and documentation of the project’s resulting package.

Moreover, R was reinforced as the intuitive choice since a number of pre-existing R packages that
aided the implementation were identified in the early stages of the project. The two packages that
proved most beneficial were mclust (Scrucca et al., 2016), for obtaining starting values for estimation
of copula-based models via ECM, and copula (Hofert et al., |2014)), for modelling mixture components
with a multivariate distribution defined using a copula function.

The copula package offered two classes that were important to modelling mixture components. The
copula class within the package allowed for modelling the dependence of mixture components using an
unstructured correlation matrix taking values in [—1.1], whilst the mvdc class allowed the modelling of
a multivariate distribution with proper marginal distributions with implied dependence captured by an
associated copula object. Aside from the convenience offered in modelling mixture components, the
package provided the ability to visualize density contours of mixture models as well as a formal method
for parameter estimation of copulas when obtaining starting values from observation data.

Despite the limitations of mclust as a means for constructing flexible mixture models, the package
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Figure 5: For K =2,...,9, model defined by density with optimal correlation structure is
considered. The determinant of the copula parameters of each model (det(z;) for j =1,..., K) is
plotted and shown to approach det(I,) = 1, where I, is the p x p identity matrix.

contains a number of other functions that were extremely helpful during the project’s development. The
package’s function hc () is used to achieve MBHAC results on the observation data that are independent
of the value of K. This function also facilitates the transformations previously discussed to enhance the
separation amongst groups in the data. The output is stored when fitting a family of models for varying
K, and the results are parsed alongside a new value of K to mclust’s function hclass() to determine
an initial partitioning of the data into K groups.

Without the availability of the methods and classes described in mclust and copula, the project’s
initialization procedure would have suffered from the shortcomings discussed in Sect. [2.5.2] and the
modelling of mixture components would have required more attention. The latter could have increased
the workload of the project considerably, which may have resulted in some functionality of the project’s
output rcbmm being lost due to the project’s fixed time scope.

Other packages that were less fundamental yet still beneficial to the project’s progress were cluster
(Maechler et al., |2013), fitdistrplus (Delignette-Muller et al, |2019) and parallel. Firstly, cluster
offered a framework for computing the silhouette width of each observation after finding a clustering
complex with ECM. This allows the best correlation structure to be determined for a fixed number
of components by comparing the average silhouette width of the fits arising from varying the value
of the tuning parameter. The remaining packages parallel and fitdistrplus were used to allow
for parallel computing and for obtaining estimates for marginal parameters using maximum likelihood,
respectively. In the absence of the three packages discussed here, a method for computing silhouette
widths could have been written by the project leader in a reasonable time frame, another approach could
have been adopted to initializing marginal parameters and conditional-maximization steps could have
been performed serially. All of these changes would have been undesirable but not catastrophic to the
project’s aims, hence, it is concluded that these frameworks were helpful but not essential to the project’s
progress.

8.2 Explanation of system

The output of the development is an R package named rcbmm, which is the first general ECM implemen-
tation for copula-based mixture models in the R software. The software can be found at...
The fundamental functions in the system are fit.rcbmm(), ECM.Algorithm() and initialize.ECM(),
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Figure 6: The contours of the bivariate marginal densities of the model with density defined by
(K,\) = (4,12.5) in Sect. The observations are coloured according to their cluster assignments.

which respectively estimates a family of models and performs model selection; estimates a regularized
mixture of Gaussian copula for a fixed value of K and A given starting values; and computes starting
values given a fixed value of K. All of these functions are also dependent on some observation data and
prescribed marginal distributions supplied by the user. Fig [7] provides a flowchart to demonstrate the
approach fit.rcbmm() takes to model selection and the relationship between the functions.

A detailed explanation of the relationships between the non-fundamental functions in the package
is omitted, however, a description of each function, its arguments and its output can be found in the
software documentation (see Appendix D[)

8.3 Evaluation

The software produced facilitates a new flexible family of mixture models, thereby contributing to the
field of model-based clustering. Moreover, the implementation of ECM is the first general ECM imple-
mentation for copula-based mixtures. The development of the software is therefore considered a successful
project. Any sub-standard programming practices were identified and corrected during the early stages
of the project with the assistance of the project supervisor, which ensured the final software incorporated
good coding practices throughout. Also, the part agile methodology (see Sect. was beneficial as it

25

0.8

0.4

0.0

0.8

0.00 010 020 030

00 05 1.0

-10



INPUT

Sample data
Grid of K values
Grid of lambda values

Matrix of BIC values
Matrix of mean sithouette values

number of mixture
components using BIC

Sample data Marginal distributions
Initialization method K 9 i ’ Model selection method
v | Marginal distributions | I
! ' MBHAC pairs ' [ Validate inputs
| « | v
i i i Perform MBHAG for
i : i gach transformation
| | | Pick k = min(grid of K
‘ H Starting values ! values}
' i Transformation used |
! | ! I’
i i : .| Retrieve starting
[ ! ' 7| wvalues for ECM
. Sample data !
ECM Algorithm k ! ¥
______________ , Starting values i Pick lambda = 0
] ’ k i 5 ing val
e e [ ey s
i E:". Marginal distributions : m:madel previous parameter
' i ! estimates)
! : : Text ry
E ; - : .‘:{ Store the results ]
i i Parameler estimates |
| ' Posterior probabilities | [ Increment ] [
: : Clustering i lambda Increment K
; i Likelihood : » A
l | Bic i ambda = max(grid o
' i Mean silhouetie width lambda values)? N
i Select the lambda
; with largest mean
! silhouette width as
! optimal model for k
i k = max(grid of M
H values)?
OUTPUT i
Optimal model for each k i -
Optimal model over all k ! Select the optimal

Figure 7: A flowchart to demonstrate the approach taken by fit.rcbmm().

allowed for changing requirements. Any limitations and suggestions for future development are included

in Section [[0.4l

9 Project management

In order to research and understand challenging statistical concepts, achieve the goal of development
and overcome unexpected challenges, the project was broken down into multiple tasks. This section
discusses the milestones of the project, how it was managed and professional issues arising from the

work completed.
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9.1 Methodology

Initially, the project was broken down into four phases: research, development, comparison & testing and
report writing.

The approach towards the research stage was simple yet efficient. A small bibliography was identified
with the assistance of the project supervisor, and progress was made by examining the literature followed
by creating written notes on the topics. This allowed the project leader to consider the material in great
detail, ensuring the fundamental concepts of the project were interpreted and understood at this early
stage. In the case that a subject found in the literature was challenging, personal notes were highlighted
with a green question mark allowing the answer to enquiries to be found during the next supervision
session. This approach allowed statistically challenging concepts to be understood relatively quickly.

A sub-objective of the research stage was the development of the full EM algorithm from scratch.
Whilst the implementation served no purpose to the long term project goals, the process of ’learning by
doing’ ensured theory related to the EM algorithm and GMMs was fully understood. This was effective,
since the exercise highlighted some misunderstanding of the convergence of the EM algorithm which had
not been identified by simply reading the literature. The assistance of the project supervisor helped
overcome this issue, which ensured the same problem did not arise during the implementation of the
ECM algorithm.

A mixture of plan-driven and agile was adopted during the development stage of the project. The
project deadline meant a long-term plan with various development goals had to be used to ensure target
completion date was met, whilst a part agile methodology was needed to adapt to changing requirements
and varying workload from other modules. An underestimation of the problems faced by numerical issues
during the fitting of various mixture models to the NBA dataset meant development was extended,
however, this did not have a significant effect on the project’s progress since the fundamental concepts
of the ECM algorithm were implemented by week 5 of term 2. Moreover, a 2 week buffer built into the
plan meant there was sufficient time to extend the development efforts whilst still preparing adequately
for the 2nd deliverable (project presentation) in week 10 of term 2.

A part agile approach was implemented by using a methodology similar to that of SCRUM. Weekly
meetings with the project supervisor, which are considered equivalent to a sprint planning meeting if
using SCRUM methodology, allowed the review of goals from the previous week, the identification of
goals for the forthcoming week and continuous feedback on coding strategies. It must be noted that due
to the responsibility of the project’s progress falling to an individual rather than a team, the requirement
for a daily SCRUM meeting was dropped. The weekly in-person assistance, coupled with intermediate
email communications when necessary, allowed the development of the project’s algorithms at a rapid
rate during the first half of term 1. This eased the pressure from week 6 onwards, ensuring the remaining
goals of the project could be overcome in a manageable way.

The concluding stages of the project tesing & comparison and report writing were completed mostly
independently. The first of which was completed by storing the results in .RData and R files allowing
results to be reproduced. The full report writing process was aided by a detailed review of two chapters of
the report by the project supervisor, thus enabling the development of a writing style that was maintained
for the remaining chapters. This was advantageous as it allowed the project leader to learn from a writer
with experience in terms of producing statistical literature, thereby improving the quality of the report.
Supervision sessions were relaxed to a fortnightly basis as less assistance was required at this stage due
to a decrease in new challenges encountered. The benefits of these meetings, which were held via Skype
due to the challenges presented by the COVID-19 pandemic, were maximised by preparing questions
in advance and using the share screen capabilities of Skype for the project supervisor to read written
questions and corresponding code when necessary.

A method used at more than one stage of the project was the strategy behind development of the
EM algorithm in the resarch stage and ECM algorithm in the development stage. For both tasks, a
prototype was produced that could cater for K = 2 mixture components and data with dimension p = 2.
In the case of ECM, the prototype was designed to facilitate only normal marginal distributions when
modelling mixture components using copulas. The prototypes were extended after seeking advice from
the project supervisor upon completion, ensuring any poor coding practices were identified and corrected
before writing the fully functional software.

9.2 Timeline

The project was formalised by a detailed specification on October 9, 2019, and concluded by the com-
pletion of the report on January 13, 2025. This 7 month period can be divided into Term 1 and the
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Christmas break, which were used for research purposes, Term 2, which had a strong focus towards
software development, and the Easter break, which aimed to conclude the software development and saw
the production of the final report.

It is common for a long-term project of this nature to have associated with it a Gantt chart. However,
due to the lack of understanding of the concepts behind development prior to completing the research
stage, a Gantt chart could not be included in the specification. Instead, the project was divided into the
four stages as previously discussed. A goal of the research stage, which was planned under the advice of
the project supervisor, was to spend weeks 3-7 of term 1 understanding the initial bibliography (mclust
5, Kosmodis, Meng & Rubin). The allocation of approximately a month to this task was sensible, since
it was realistic and provided a buffer of a week before the deadline of the progress report in the case that
research progress was hindered. During this period, intense workloads from other modules; commitments
as the 1st team captain of The University of Warwick’s football club; and a small period of illness, meant
the planned buffer was needed and an additional week of work was necessary to complete the goal. Good
time management at this stage ensured the 1st deliverable (the progress report) was completed by the
deadline.

The final goal of the research stage was to understand the method of reparameterizing correlation
matrices, discussed in [Tsay and Pourahmadil (2017, during the Christmas break. This task was less de-
manding in terms of time constraints, and was completed prior to term 2 without any delays. Throughout
the research stage, time was balanced on a weekly basis between reading new literature and implementing
algorithms (methods used by EM), so that the supervision sessions could be used to answer questions
on both topics. The monitoring of the research stage with small goals proved helpful, as it ensured
motivation was maintained at all times.

At the time of writing the progress report in week 8 of term 1, a deeper understanding of the project
had been learned, and hence, the progress report highlighted a plan for development during term 2.
The part agile methodology ensured the project could cater for changing requirements. In fact, the
requirement for the implementation of the project to handle data with continuous and non-continuous
features was dropped under the guidance of the supervisor in week 6 of term 2. This change was
sensible as it was more important to finalise the methods already implemented (for example, overcome
numerical issues) at that stage than it was to add new functionality. A structured plan, effective time
management and high levels of motivation during the development period ensured the 2nd deliverable
(project presentation) was completed to a high standard. On reflection, a higher mark would have been
achieved in the presentation if a proportion of time in term 2 had been spent applying the software to a
dataset, which would have produced results that could have been included.

The report was written over a 2 month period from the start of March to the start of May. During this
phase, time was balanced between revision demands from other modules and report writing. Effective use
of supervision meetings ensured any problems during this period were overcome and the 3rd deliverable
(written report) was completed significantly before the deadline.
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9.3 Tools

The following table outlines the tools used during the project and a description of how, when or why

they were used.

R & Rstudio

See Sect. [8.1

Dropbox

The online file hosting service Dropbox was used partly as a means of file transfer between
project leader and supervisor, but predominately as a framework for accessing the project’s
associated files via the cloud.

Email

Emails were used as a means of communication between project leader and supervisor for
the purpose of seeking feedback, giving updates and providing guidance on the next steps
of the project. Although the majority of discussions regarding the project were held during
meetings, emails proved helpful when communication was required between times, especially
when weekly meetings changed to fortnightly meetings.

Skype

The advantage of Skype during the project is it allowed real-time communication regardless
of geographical location. This was helpful prior to the deadline of the module specification,
where feedback was given despite the project supervisor being off campus. Moreover, Skype
proved even more helpful when university rules demanded that all meetings were held re-
motely as a result of the Covid-19 pandemic. Skype’s screen share capabilities allowed code
specific feedback as well as questions in written English to be answered.

Overleaf &
LaTeX

The Overleaf editor was used to produce the written deliverables of the project using LaTeX,
as well as providing a framework for producing the equations that had to be displayed in
the project presentation. LaTeX was chosen due to its professional appearance, whilst
Overleaf was chosen due to the convenience it offers in visualising written reports as they
are produced, as well as acting as an online file store. This was helpful during the production
of the final report, as it enabled computers with large monitors in the university’s library to
be used.

natbib &
BibTex

BibTex allowed the management of the project’s bibliography, whilst natbib allowed the
customization of the format of citations.

Google
Slides

The presentation program Google Slides offered a free software for producing the project’s
presentation. Google slides’ built-in themes and easy-to-use interface allowed the effortless
construction of a professional looking presentation.

Pen & Paper

Although the most simple tool used in the project, pen & paper was invaluable. The ability
to write structured notes is dependent on understanding the concepts first. Hence, making
handwritten notes forced the ideas behind the project to be understood early on in the
project.

Table 4: A table to show the tools used and a description of the effect they had on the project.

9.4 Risks

Risk: The project leader or supervisor falling ill and causing a backlog of work.

Mitigation: Due to the project being spread over such a long period, illness was a likely concern.
Skype communications were set up at the start of the project which meant meetings could still be held
in the case of illness. However, illness of the project leader posed a serious threat as they were entirely
responsible for the completion of all work related to the project. Hence, buffers were built in to the
project’s plan which were, in fact, needed.

Risk: Loss of work due to human or computer error.

Mitigation: This issue can be separated into a digital risk and physical risk. Firstly, loss of files related
to the project (for example, presentation slides, the bibliography, R code) was prevented by using online-
based services such as Dropbox, Google Slides and Overleaf. Secondly, photos were taken of the most
important handwritten notes as they were produced during term 1. It was not necessary to take photos
of all notes, as some were simple enough to be memorized as they were produced.

Risk: Software development resulting in new errors that compromise the functionality of the project’s
software.
Mitigation: Separate versions of the project’s associated code were saved as milestones were reached.
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This ensured that new errors could be overcome by tracing back to the previous version of the code. For
example, the prototype of the EM implementation during term 1 was copied before it was extended to
the full working version.

Risk: Underestimation of the time required to complete phases of the project.

Mitigation: Firstly, the dividing of the project into four stages, with an allocated time period for
each, provided a structured and measurable scale to assess the ongoing progress of the project. This
process allowed the impact of the project leader’s illness during the research stage to be easily assessed.
Secondly, continuous communication with the project supervisor, who has experience of supervising
similar projects with identical time constraints, enabled advice regarding time pressures throughout the
project. This advice, alongside a part agile approach to development meant requirements of the project
could be updated to ensure the project did not overrun.

Risk: Alternative project direction unintentionally followed.

Mitigation: Due to the fact that concepts were being learned with little prior knowledge during the
research phase of the project, it was likely too much time would be spent by the project leader uncon-
sciously trying to understand concepts that had little benefit to the project’s development stage. This
risk was mitigated partially by the project supervisor’s advice during weekly meetings. If excessive notes
were made on a topic that was related to finite mixture models but not the project specifically, the
project supervisor would recommend no more time be spent researching that topic.

9.5 Legal, social, ethical & professional issues

The algorithms associated with the project were applied to a real dataset in Sect [7.2] The data was
readily available and hence there was not a requirement for appropriate permissions to be obtained before
using the dataset. Moreover, it was verified that there was no sensitive information in the data or the
results presented in the report. Finally, the regulations outlined by the CRAN Repository Policy will be
obeyed when the software is released as an R package.

10 Discussion

10.1 Contribution to the field

A new family of regularized copula-based mixture models has been proposed, and a method of estimating
such models for continuous data has been described and implemented in the R software. The implemen-
tation, which is to be released in the form of an R package, is the first general ECM implementation
available. The implementation permits unconstrained optimization during estimation by performing an
appropriate transformation to the parameters of the model. The software allows Normal, Beta and
Gamma marginal distributions, for data defined on the whole real line, (0,00) and (0, 1), respectively.
An optimal correlation structure of the component distributions is adaptively selected for each new
modelling problem, and the optimal number of components is identified using BIC. The application of
the average silhouette width of observations for the purposes of identifying optimal correlation struc-
ture ensures the clusters are well separated and the resulting model has good generalization properties.
The application to simulated data and comparison with mclust saw the software outperformed existing
methods in terms of BIC, clustering performance and inference regarding mixture components.

Copulas are significant in the context of model-based clustering since they allow for the construction
of flexible families of models with clusters taking a range of exotic shapes. The ability to first select the
marginal properties of the distribution and then capture their implied dependence is highly desirable, as
it allows one to handle mixed-domain data in a natural way. Moreover, copula-based mixtures encompass
all known mixture models implying no flexibility is forfeited by switching from an elliptical structure, or
another proposal in the literature, to a copula-based approach.

10.2 Further research

A number of questions remain for further development, such as, the definition of an appropriate grid of A
values given the sample data. When fitting a family of models for K = 2...,9, an additional parameter
in the tuning grid of A values results in the addition of 8 new models to the model selection problem.
The estimation of these models results in additional computational effort, which introduces especially
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large demands in terms of computation time for larger values of K. However, a trade-off problem exists
since a tuning grid with few values and large intervals between each value may identify a significantly
sub-optimal correlation structure.

Further applications may identify a trend in the relationship between a tuning grid and the resulting
mean silhouette widths of the observations in the scenario where other factors, such as n and p, are fixed.
Establishing such a pattern would allow the construction of a more appropriate tuning of A values prior
to fitting | K| x |A| models, where K and A are sets containing the range of mixture components and
values of the tuning parameter, respectively.

In a different direction, a rigorous study of the proposed method’s performance in a supervised setting
can assess if a regularized copula-based mixture estimated via ECM overcomes some of the shortcomings
of EM and BIC. It is well known that the combination of GMM estimation and model selection via EM
and BIC often results in an overestimation of the number of mixture components when the true value
is known. Hennig (2010)) proposed a merging approach where normally distributed components’ union
is interpreted as a single cluster. On the other hand, EM and BIC has demonstrated a proclivity for
severely underestimating the number of components in higher dimensions, which was overcome by the
introduction of a LASSO-penalized BIC in [Bhattacharya and McNicholas| (2014). The range of exotic
shapes taken by component distributions in copula-based mixtures has been shown to outperform other
approaches in terms of capturing the dependence structure underlying sample data (see, Kosmidis and
Karlis| 2016}, Ezample 1.1), however, the resulting inference regarding the number of components in the
mixture is yet to be investigated in detail. Sect [7.1] demonstrated one example where the regularized
copula-based approach correctly inferred the number of mixture components K = 2 using the previously
discussed model selection procedure (see Sect , thereby outperforming a Gausian mixture fitted via
mclust which incorrectly predicted K = 4.

10.3 Future improvements to the regularized copula-based mixture model

In the context of the current definition of the model, the number of parameters associated with the
model grows linearly with p in terms of marginals and proportional to the square of p in terms of copula
parameters. The latter has a significant negative effect in terms of computation time during estimation
on the copula parameter in CM-2 in each iteration of ECM, particularly in the case of high-dimensional
data modelling. |Kosmidis and Karlis| (2016) suggested extending parsimonious parameterizations for
normal mixture models like the factor analyzers proposed in |Mcnicholas and Murphy| (2008]) to copula-
based mixtures, which has since been investigated in [Zhang and Baekl (2019)). Due to the approach
described in this dissertation involving the reparameterization of copula parameters using angles, it is
suggested that an alternative direction is adopted. [Tsay and Pourahmadi| (2017) introduced methods of
identifying a structured correlation matrix from a flexible matrix of angles and identifying a set of pivotal
angles that can be used to parameterize the structured matrix. This process can reduce the number
of parameters associated with the optimization to significantly less than %p(p — 1), thereby reducing
estimation time.

The previous discussion regarding the problem of identifying an approximate tuning grid of A values
to be used as a starting point for many model-based clustering problems is challenging due to many
factors that affect the results of mixture model estimation. The influence of n on the magnitude of
shrinkage portrayed by the analysis of a simulated dataset (see, Sect. can be eliminated by adapting
the likelihood of the model. Exchanging the tuning parameter A regulating the shrinkage term in the
likelihood function with Af(n), where f(n) is some function of n, would stabilise the dominance of
the first parenthesis in the equation when 7 is large. Determining an appropriate function f(n) should
be considered in future research.

10.4 Future improvements to rcbmm

In terms of performance, the regularized copula-based mixture significantly outperformed mclust in Sect.
but the computation time of mclust is unrivalled. The fitting time of the optimal model for both
applications in Sect. [7|is given in Tab. [5} All timings took place on an iMac (Mid 2011) with a 3.1 GHz
Intel Core i5, and 20 GB of RAM memory, running R version 3.6.2. Parallelization across components
was used as described in Sect. Whilst the timings can be significantly reduced by a less severe
termination criterion (see, Sect. , an attempt to optimize the computation should be made using the
Rccp package (Eddelbuettel and Balamutay, [2018]) in R, which is a clean API allowing the execution of
high-performance code by connecting C++ to R. The package helps address bottlenecks in code, such
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Application n K X q Iterations Time Additional time (A = 0)
Simulated dataset 375 2 17 51 23 0.27 021
NBA dataset 493 4 125 143 28 3.96  12.12

Table 5: The computation time (in minutes) of the optimal models determined in Sect. &[7.2
estimated with the new grid of tuning parameters A = 0,17 (for simulated dataset) and A = 0,12.5 (for
NBA dataset).

as loops that cannot be easily vectorized because subsequent iterations depend on previous ones. This
solution applies directly to the warm starts method for identifying starting values for ECM each time A
is increased.

Aside from favourable efficiency in terms of computation time, a valuable feature of the function
call Mclust () is the ability to parse a previous result obtained from the function call mclustBIC().
The BIC value for models that have been previously computed are not recomputed in such a scenario.
Extending fit.rcbmm() in the software to adopt a similar methodology would be of great convenience
when constructing a family of regularized copula-based mixture models. In the case the user wishes to
append a value A to the tuning grid after observing the results from a previous function call, warm starts
could be adopted using the nearest value in the grid rather than recomputing the family of models. This
implementation would be especially beneficial as it will relax the trade-off previously described between
a large tuning grid and finding a sub-optimal dependence structure, as the user could begin with a
tuning grid with relatively large intervals and "zoom-in" on a specific value of the grid after observing
the results.
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A Maximum-likelihood estimation

Suppose observed data ©ops = (27 ,...,2L)T with n samples assumed to have been independently drawn
from the same distribution. If the parameters ¥ govern a density function f(x;; ®) (i =1...,n), then
the resulting density for the data is,

w0b87 Hf (BZ, (‘I’ mobs) (31)

L(¥; X) is called the likelihood function, which is a function of the parameters ¥ given the fixed data
Tops. When performing maximum likelihood estimation, the aim is to maximise £ subject to ¥. In
the majority of cases, this is performed by maximising log £, due to the log-likelihood being analytically
simpler to work with.

B EM algorithm’s parameter updates

The EM algorithm’s M-step 2 requires the maximisation of the conditional expectation of the complete
data log-likelihood in , which can be separated into K different maximisation problems, such that,
for each j € {1,..., K}, the expression maximised is

Z%‘j{log fj(%;ej)}a (32)

. where f;(;;0;)} takes multivariate normal distribution (3). Hence, the updates for EM are derived
as follows. The density

fi(wi;0;) =

1 1 1 B
(V2m)p \/det(Z;) eXp{ —gl@i— py) "2 (s — l‘j)}

gives
log f(xi;0;) = log 27 11 | | 1( i ) 1( i )
0g Ji\&Li;0; 2 0og 5 0og Ej 5 Ti— I Zj Ti— ).

Differentiating with respect to p; and X; gives:

d d -1 @) @iy
1 (24:0) =x; — ., 1 20) = —— J J
Hence,
zij— log(f;(x;;0;)) =0 = 2T = Zijp; = p, = ST
; ]d,u’j ( ]( J)) ; J ; IF"g 7 22:1 Zij
d Nz (@)@ o) YT (e — )T (i — )
ZZU dz log(f](mlv )) - O = ; E = ;Z’L] 225 E Z:L ) Z,L] .

C Silhouette width

The silhouette width of an observation x; in a dataset x5 can be computed after a clustering of the
data into K components has been identified, with each x; assigned to exactly one of 1,..., K. Define
C; = {x; : x;is assigned to cluster j} (j =1,..., K), then define for observation x; in Cj:

e The measure of similarity of the point @; with other points in the same cluster as

Z d(z;, xy).

mkeC

a(x;) = ’
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e The measure of dissimalirity of the point x; to it’s neighbouring cluster as

1

b(x;) = min

d(x;, xy).
i'#i |Cjr ( &)

T ECj/
e The silhouette width of the point x; as

a(x;) — b(z)

s(@i) = max{a(z;) — b(;)}

Additionally, the distance metric d(x;, xy) is taken as the Euclidean distance between the point x; and
xp. It follows that —1 < s(x;) < 1 for all ¢ = 1,...,n. A value closer to 1 suggests the point is
appropriately clustered, a value close to —1 implies the point has been assigned to a poor choice of
cluster, and a value near 0 suggests the point is on the border of two different clusters.

D Software documentation

The documentation is attached below.
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angles2rho A tool for converting a matrix of angles to a correlation matrix

Usage

angles2rho(theta)

Arguments

theta A (p — 1) times (p — 1) matrix of angles.

Value

A p times p correlation matrix corresponding to theta.

See Also

rho2angles

Examples

theta <- matrix(rep(0.5, 4), 2, 2)
angles2rho(theta)

CM.step.1 CM-step 1 for regularized copula-based mixture models estimation

Description
Implements the conditional-maximization step 1 of the ECM algorithm for regularized copula-based
mixture model.

Usage

CM.step.1(x, K, z, mvdc, margins, trace = T)

Arguments

X A numeric matrix or data frame of observations. Rows correspond to observa-
tions and columns correspond to variables.

K The number of mixture components.

z A numeric matrix representing the current value of the posterior probabilities of
membership of the observations after the expectation step of the ECM algorithm.
Columns are associated with a mixture component and rows are associated with
observations. The current value of the probabilities should be computed via
E.step.

mvdc A list of objects of class mvdc. Each element of the list corresponds to a mixture

component and contains the previous estimates for the component distribution’s
marginal and copula parameters.



CM.step.2

margins

trace

Value

A character vector specifying the marginal distributions of the components in
the mixture. The vector must have a length equal to the number of columns in
x. Each element must be equal to "norm", "beta" or "gamma".

A logical value indicating if an update regarding the step’s progress should be
displayed.

A list of objects of class mvdc. Each element of the list corresponds to a mixture component and
contains the updated estimates for the component distribution’s marginal paramters and the same
estimates as were parsed for the estimates of the copula parameter.

See Also

CM.step.2, ECM.Algorithm

CM.step.2

CM-step 2 for regularized copula-based mixture models estimation

Description

Implements the conditional-maximization step 2 of the ECM algorithm for regularized copula-based

mixture model.

Usage

CM.step.2(x, K, z, mvdc, margins, lambda trace = T)

Arguments

X

mvdc

margins

lambda

trace

A numeric matrix or data frame of observations. Rows correspond to observa-
tions and columns correspond to variables.

The number of mixture components.

A numeric matrix representing the current value of the posterior probabilities of
membership of the observations after the expectation step of the last iteration
of the ECM algorithm. Columns are associated with a mixture component and
rows are associated with observations.

A list of objects of class mvdc. Each element of the list corresponds to a mixture
component and contains the current estimates for the component distribution’s
marginal and previous estimates for copula parameters. The estimates for the
marginal parameters should have been updated by CM.step.1.

A character vector specifying the marginal distributions of the components in
the mixture. The vector must have a length equal to the number of columns in
x. Each element must be equal to "norm", "beta" or "gamma".

A numeric value indicating the value of the tuning parameter for regularization.

A logical value indicating if an update regarding the step’s progress should be
displayed.
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Value
mvdc A list of objects of class mvdc. Each element of the list corresponds to a mixture
component and contains the updated estimates for the component distribution’s
copula paramter and the same estimates as were parsed for the estimates of the
marginal parameters.
penalty The shrinkage penalty to apply to the log-likelihood of the model, resulting from
the estimates of the copula parameters and the value of 1ambda.
See Also

CM.step.1, ECM.Algorithm

E.step E-step for regularized copula-based mixture models

Description

Implements the expectation step of the ECM algorithm for regularized copula-based mixture model.

Usage

E.step(x, K, mixing_probs, mvdc, margins)

Arguments
X A numeric matrix or data frame of observations. Rows correspond to observa-
tions and columns correspond to variables.
K The number of mixture components.

mixing_probs A numeric vector indicating the mixing proportions of the mixture model.

mvdc A list of objects of class mvdc. Each element of the list corresponds to a mixture
component and contains the current estimates for the component distribution’s
marginal and copula parameters.

margins A character vector specifying the marginal distributions of the components in
the mixture. The vector must have a length equal to the number of columns in
x. Each element must be equal to "norm", "beta" or "gamma".

Value

A numeric matrix representing the posterior probabilities of membership of the observations after
performing a single expectation step of the ECM algorithm. Columns are associated with a mixture
component and rows are associated with observations.

See Also
ECM.Algorithm
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ECM.Algorithm Estimation of a regularized copula-based mixture model

Description
Implements the ECM algorithm for regularized copula-based mixture models, starting with the
expectation step.

Usage

ECM.Algorithm(x, K, lambda, start, margins, trace =T, maxit = 1000, epsilon = 1e-06)

Arguments

X A numeric matrix or data frame of observations. Rows correspond to observa-
tions and columns correspond to variables.

K An integer specifying the number of components for which a regularized copula-
based mixture model should be fitted.

lambda A numeric value indicating the value of the tuning parameter for regularization.

start A list providing the starting values for ECM. The list fit.rcbmm

margins A character vector specifying the marginal distributions of the components in
the mixture. The vector must have a length equal to the number of columns in
x. Each element must be equal to "norm”, "beta"” or "gamma”.

trace A logical value indicating if an update regarding the algorithm’s progress should
be displayed after each iteration.

maxit A numeric value indicating the maximal number of ECM iterations.

epsilon A numeric value specifying the tolerance associated with determining when con-
vergence of the ECM algorithm has been achieved.

Value

K The number of mixture components.

lambda The value of the tuning parameter

z A numeric matrix representing the posterior probabilities of membership of the
observations after the expectation step of the last iteration of the ECM algorithm.
Columns are associated with a mixture component and rows are associated with
observations.

clusters A classification vector indicating the associated cluster of each observation. The
classification corresponds to z.

loglik A numeric vector displaying the penalized log-likelihood after each iteration of

ECM.
param_number  The number of independent parameters associated with the model.

BIC The BIC value of the model. Computed using the unpenalized log-likelihood
after the last iteration of the ECM algorithm.

mixing_probs  The mixing proportions associated with the model.

mvdc A list of objects of class mvdc. Each element of the list corresponds to a mixture
component.
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transformation A character value indicating the transformation when identifying starting values.
The value is NULL unless 1ambda=0. See initialize. ECM.

marginal_param A list containing the marginal parameters of the model as estimated by ECM.
Each element corresponds to a mixture component.

copula_param A list containing the copula parameters of the model as estimated by ECM. Each
element corresponds to a mixture component.

copula_param_angles
A list containing the copula parameters of the model re-expressed as angles.

silhouette See information regarding silhouette package. Add reference here.

See Also
E.step, CM.step.1,CM.step.2, ECM.Algorithm, ECM.Algorithm

Examples

iris_x <- as.matrix(datasets::iris[, -5])

margins_iris = rep("norm”, 4)

K<-3

init_iris <- initialize.ECM(iris_x, K, margins_iris, transform = F)

ECM_out <- ECM.Algorithm(iris_x, K = 3, lambda = 2, start = init_irs, margins = margins_iris)

extract.copula.pars Extraction of copula parameters of a regularized copula-based mix-
ture model

Description

A function for extracting the copula parameter parameterizing the mixture components of a reg-
ularized copula-based mixture model from a list of mvdc objects. The copula parameter for each
mixture component can be extracted in terms of a correlation matrix or a matrix of angles.

Usage

extract.copula.pars(mvdc, as_angles = F)

Arguments
mvdc A list of objects of class mvdc. Each element of the list corresponds to a mixture
component and contains the estimates for the component distribution’s marginal
and copula parameters.
as_angles A logical value indicating whether the copula parameter should be returned as a
matrix of angles instead of a correlation matrix.
Value

A list of matrices corresponding to the copula parameter of each mixture component contained in
mvdc.

See Also

extract.marginal.pars
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Examples

iris_x <- as.matrix(datasets::iris[, -5])

margins_iris = rep("norm”, 4)

K<-3

init_iris <- initialize.ECM(iris_x, K, margins_iris, transform = F)

ECM_out <- ECM.Algorithm(iris_x, K =3, lambda = 2, start = init_irs, margins = margins_iris)
cop_pars <- extract.copula.pars(ECM_out$mvdc)

extract.marginal.pars Extraction of marginal parameters of a regularized copula-based mix-
ture model

Description

A function for extracting the marginal parameters parameterizing the mixture components of a
regularized copula-based mixture model from a list of mvdc objects.

Usage

extract.marginal.pars(mvdc)

Arguments
mvdc A list of objects of class mvdc. Each element of the list corresponds to a mixture
component and contains the estimates for the component distribution’s marginal
and copula parameters.
Value

A list of lists corresponding to the marginal parameters of each mixture component contained in
mvdc. Each sub-list in the list has a length corresponding to the number of marginal distributions
defined by the model.

See Also

extract.copula.pars

Examples

iris_x <- as.matrix(datasets::iris[, -5])

margins_iris = rep("norm”, 4)

K<-3

init_iris <- initialize.ECM(iris_x, K, margins_iris, transform = F)

ECM_out <- ECM.Algorithm(iris_x, K = 3, lambda = 2, start = init_irs, margins = margins_iris)
cop_pars <- extract.copula.pars(ECM_out$mvdc)
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fit.rcbmm Model selection

Description

The function selects the most appropriate model from a family of regularized copula-based mixture
models arising from a varying number of components and a differing shirnkage parameter.

Usage
fit.rcbmm(x, K, lambda_grid, margins, transform, ...)
Arguments

X A numeric matrix or data frame of observations. Rows correspond to observa-
tions and columns correspond to variables.

K An integer vector specifying the number of components for which a regularized
copula-based mixture model should be fitted. The default is K=2:9.

lambda_grid An integer vector specifying the the values of the shrinkage parameter for which
aregularized copula-based mixture model should be fitted. The default is lambda_grid
= 0. If the vector parsed does not contain @, then @ is appended as starting values
can only be obtained in the case no regularization is applied to the model.

margins A character vector specifying the marginal distributions of the components in
the mixture. The vector must have a length equal to the number of columns in
x. Each element must be equal to "norm”, "beta” or "gamma”.

transform A logical value indicating whether or not starting values for the case lambda =
0 should be obtained using the transformations SPH, PCS, PCR and SVD. The
default is TRUE.

Value

BIC A matrix demonstrating the BIC values achieved by each model in the family.
Each column corresponds to a given value of lambda and each row corresponds
to a given number of components.

SIL A matrix demonstrating the average silhouette width achieved by each model in
the family. Each column corresponds to a given value of lambda and each row
corresponds to a given number of components.

all_models A list of lists with each element containing information about a specific model

fitted (see the help file for ECM.Algorithm for details).

selected_models
A list containing the information about the optimal model for each number of
mixture components in the family. The optimal model for each number of com-
ponets is selected by picking the lambda that results in the largest average sil-
houette width. See the help file for silhouette for details.

final_model The model contained in selected_models that maximized BIC. (see the help
file for ECM.Algorithm for details)

See Also
ECM.Algorithm, ECM.initialize. ECM
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Examples

n <- 100 ; mix_1 <- cbind(rnorm(n, 2, 1), rgamma(n, 10, 1/5), rbeta(n, 2, 20))
n <- 120 ; mix_2 <- cbind(rnorm(n, -2, 1), rgamma(n, 5, 2), rbeta(n, 6, 5))
sim_x <- rbind(mix_1, mix_2)

margins_sim <- c("norm”, "gamma"”, "beta")

K_grid <- c(2, 3)

lg <- seq(o, 30, 1)

fit_out <- fit.rcbmm(sim_x, K = K_grid, lg, margins_sim)

initialize.ECM Starting values for ECM

Description

Identifies optimal starting values for ECM using the results of MBHAC applied to the data. The data
undergoes transformations to enhance separation amongst groups prior to performing MBHAC.

Usage

initialize.ECM(x, K, margins, transform = T, hc_pairs = NULL, classification = NULL)

Arguments

X A numeric matrix or data frame of observations. Rows correspond to observa-
tions and columns correspond to variables.

K The number of mixture componets.

margins A character vector specifying the marginal distributions of the components in
the mixture. The vector must have a length equal to the number of columns in
x. Each element must be equal to "norm", "beta" or "gamma".

transform A logical value indicating whether or not starting values should be obtained
using the transformations SPH, PCS, PCR and SVD. The default is TRUE.

hc_paris The results from MBHAC obtained from the function call hc () using the mclust

package. If NULL, the function obtains the results by calling hc ().

classification A numeric vector representing a partitioning of the data x. If not NULL, the
clustering identified by the vector takel3 preference over the clustering identified
by hc_pairs.

Value

mixing_probs A numeric vector indicating the starting values of the mixing proportions.

mvdc A list of objects of class mvdc. Each element of the list corresponds to a mix-
ture component and contains the starting values for the component distribution’s
marginal and copula parameters.

transformation A character string indicating the transformation applied prior to performing MB-
HAC.

loglik The log-likelihood corresponding of the model given the starting values of the
parameters and the data.
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See Also

hc

Examples

iris_x <- as.matrix(datasets::iris[, -5])
margins_iris = rep("norm”, 4)
K <-3

init_iris <- initialize.ECM(iris_x, K, margins_iris, transform = F)
init_iris <- initialize.ECM(iris_x, K, margins_iris, transform = T)
P2p.angles A tool to work with matrices of angles
Description
Creates a numeric vector of parameters from a matrix of angles.
Usage
P2p.angles(theta)
Arguments
theta A matrix of angles to be converted into a parameter vector.
Value

A numeric parameter vector representing angles.

See Also

p2P.angles

Examples

theta <- matrix(c(0.9, 0, 1.2, 0.3), 2, 2)
P2p.angles(theta)



p2P.angles

11

p2P.angles A tool to work with matrices of angles

Description

Creates a matrix from a given vector of parameters representing angles.

Usage

p2P.angles(params)

Arguments

params A parameter vector to be converted into a matrix of angles.

Value

A matrix of angles.

See Also

P2p.angles

Examples

param <- c(0.3, 0.2, 0.6)
p2P.angles(param)
angles2rho(p2P.angles(param))

rho2angles A tool for converting a correlation matrix to a matrix of angles

Usage

rho2angles(rho_mat)

Arguments

rho_mat A p times p correlation matrix to be converted to a matrix of angles.

Value

A (p—1) times (p — 1) matrix of angles corresponding to rho_mat.

See Also
ECM.angles2rho

Examples

rho_mat <- matrix(c(1, 0.5, 0.5, 1), 2, 2)
rho2angles(rho_mat)
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